Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 638: 788-800, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36791477

ABSTRACT

HYPOTHESIS: Achieving spontaneous, rapid, and long-distance liquid transport is crucial for many practical applications such as phase change heat transfer and reactions at solid-liquid interfaces. Surface nanotexturing has been widely reported to improve the wickability of microtextured metal surfaces. Although surface nanotextures show high capillary pressure, the high fluid flow resistance through nanotextures prevents fluid transport. The underlying mechanisms responsible for the enhanced wickability of nanotextured surfaces are still unclear. EXPERIMENTS: Herein, we prepared a variety of microtextures and nanotextures on copper surfaces by femtosecond laser micromachining and chemical oxidation, respectively. The wickability of these textured surfaces was quantitively compared by measuring wicking coefficient and capillary rise speed. We designed experiments to eliminate any possible effects of surface oxidation and metal composition on wickability. A theoretical model describing the vertical and horizontal capillary flow in V-shaped microgrooves was proposed and utilized to analyze the experimental results. The effects of time-dependent wettability on wickability were also examined. FINDINGS: Surface nanotexturing can enhance surface wettability while altering the micrometer-scale structural characteristics. The greatly enhanced wickability of nanotextured surfaces can only be observed when the surface microtextures have a very small aspect ratio. Otherwise, for metal surfaces with fine microgrooves, the latter effect is more pronounced, and thus the surface wickability may deteriorate after preparing surface nanotextures; for surfaces with wide microgrooves, both effects are minimal, and the surface wickability enhances only marginally after surface nanotexturing. Furthermore, the wickability of microtextured surfaces will decay rapidly due to the adsorption of airborne organics, whereas adding surface nanotextures can significantly inhibit this degradation. The anti-contamination capability of surface nanotextures is considered likely to be a potential mechanism responsible for the greatly enhanced wickability of nanotextured surfaces noted in some studies.

2.
J Colloid Interface Sci ; 628(Pt B): 534-544, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36007418

ABSTRACT

Micro/nano-textured metal or metal oxide surfaces that are naturally superhydrophilic will spontaneously transform into hydrophobic even superhydrophobic after being exposed to ambient air due to the adsorption of airborne organics. This fast wettability transition not only affects the true evaluation of surface wettability but also deteriorates the application performance. Albeit the mechanisms responsible for the wettability transition have been clarified, there is no universal method to recover the initial superhydrophilicity, and how the surface morphology affects the wettability transition is still unclear. Herein, we observe and compare the wettability transition of a wide variety of micro/nano-textured metal or metal oxide surfaces and propose a solvent cleaning method to recover their original superhydrophilicity. We prove that the spontaneously adsorbed organics can be removed by our proposed cleaning method while maintaining the original surface morphology and composition. Our proposed cleaning method is valid for both micro/nano-textured metal and metal oxide surfaces. We also prove that the rate of the wettability transition is not primarily affected by the specific area of surface structures but by the closeness of structural arrangement. Densely packed surface nanostructures can significantly delay the wettability transition by suppressing the diffusion of organic molecules. Our results help the true evaluation of surface wettability and provide a route for the design and preparation of long-lasting superhydrophilic surfaces.

3.
Front Surg ; 9: 1029743, 2022.
Article in English | MEDLINE | ID: mdl-36713656

ABSTRACT

Spinal surgeons have been drawn to the incidence of osteophytes following intervertebral disc degeneration in clinical practice. However, the production of osteophytes, particularly in the spinal canal, after anterior cervical discectomy and fusion (ACDF) is uncommon. We described a 42-year-old male patient who underwent C4-6 ACDF due to cervical stenosis two years prior in another public hospital in the province. His primary symptoms were significantly relieved, but he developed new pain and weakness in his right leg six months after surgery. The imaging results revealed a large posterior osteophyte at C5/6, compressing the spinal cord anteriorly. Accordingly, we performed cervical open-door laminoplasty to decompress the spinal cord. The patient's clinical symptoms had significantly improved at the one-year follow-up. This case seeks to inform surgeons that cautious, routine follow-ups are necessary for the event that a severe intracanal osteophyte develops at the operated level following ACDF. The comprehensive osteophyte removal and strong fixation at the operative level during ACDF warrant more consideration as these procedures may lower the incidence of new osteophytes. Additionally, surgical procedures may be required.

4.
Front Microbiol ; 12: 711998, 2021.
Article in English | MEDLINE | ID: mdl-34566917

ABSTRACT

Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.

5.
Phytother Res ; 35(10): 5694-5707, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34423505

ABSTRACT

Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin ß3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.


Subject(s)
Bone Resorption , Osteoclasts , Animals , Calcium , Cell Differentiation , Female , Flavonoids , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases , NF-kappa B , NFATC Transcription Factors , Osteogenesis , RANK Ligand
6.
Front Chem ; 9: 724188, 2021.
Article in English | MEDLINE | ID: mdl-34307305

ABSTRACT

Recently, as our population increasingly ages with more pressure on bone and cartilage diseases, bone/cartilage tissue engineering (TE) have emerged as a potential alternative therapeutic technique accompanied by the rapid development of materials science and engineering. The key part to fulfill the goal of reconstructing impaired or damaged tissues lies in the rational design and synthesis of therapeutic agents in TE. Gold nanomaterials, especially gold nanoparticles (AuNPs), have shown the fascinating feasibility to treat a wide variety of diseases due to their excellent characteristics such as easy synthesis, controllable size, specific surface plasmon resonance and superior biocompatibility. Therefore, the comprehensive applications of gold nanomaterials in bone and cartilage TE have attracted enormous attention. This review will focus on the biomedical applications and molecular mechanism of gold nanomaterials in bone and cartilage TE. In addition, the types and cellular uptake process of gold nanomaterials are highlighted. Finally, the current challenges and future directions are indicated.

SELECTION OF CITATIONS
SEARCH DETAIL
...