Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731637

ABSTRACT

Inkjet printing technology offers a unique approach to producing direct-patterned pixels without fine metal masks for active matrix displays. Organic light-emitting diodes (OLEDs) consisting of thermally activated delayed fluorescence (TADF) emitters facilitate efficient light emission without heavy metals, such as platinum and iridium. Multi-resonance TADF molecules, characterized by their small full width at half maxima (FWHM), are highly suitable for the requirements of wide color-gamut displays. Herein, host-free TADF inks with a low concentration of 1 mg/mL were developed and inkjet-printed onto a seeding layer, concurrently serving as the hole-transporting layer. Attributed to the proof-of-concept of host-free inks printed on a mixed seeding layer, a maximum external quantum efficiency of 13.1% (improved by a factor of 21.8) was achieved in the inkjet-printed OLED, with a remarkably narrow FWHM of only 32 nm. Highly efficient energy transfer was facilitated by the effective dispersion of the sensitizer around the terminal emitters.

2.
Chem Commun (Camb) ; 60(3): 336-339, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38073516

ABSTRACT

Continuous advancement in molecular electronics demands increasing functionality and diversity of integrated molecular junctions; however, single-functional molecular junctions fail to meet these requirements. In this article, we propose the use of a widely applicable and efficient click reaction on the surface to modify self-assembled monolayers (SAMs) to achieve multifunctional molecular tunnelling junctions, current rectification and memristance, on a single chip. This approach has allowed us to meet the growing demand for versatility and functionality in molecular electronic devices.

3.
Faraday Discuss ; 250(0): 263-270, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37947139

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive polymer in organic light-emitting devices. However, its strong acidity and fluorescence quenching effect seriously affect the overall device performance. We report a cost-effective method to address the above concerns by diluting PEDOT:PSS with deionized water, which effectively reduced the film thickness and the acidity. Therefore, the fluorescence quenching occurring at the interface was alleviated. Using the modified PEDOT:PSS as the hole injection layer, the external quantum efficiency of the device could be effectively improved by a factor of 81%, reaching a considerably higher value of 23.5%, compared with the device consisting of the original PEDOT:PSS solution used as received.

4.
Sci Adv ; 9(42): eadh3412, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37851815

ABSTRACT

The molecular electronic devices based on self-assembled monolayer (SAM) on metal surfaces demonstrate novel electronic functions for device minimization yet are unable to realize in practical applications, due to their instability against oxidation of the sulfur-metal bond. This paper describes an alternative to the thiolate anchoring group to form stable SAMs on gold by selenides anchoring group. Because of the formation of strong selenium-gold bonds, these stable SAMs allow us to incorporate them in molecular tunnel junctions to yield extremely stable junctions for over 200 days. A detailed structural characterization supported by spectroscopy and first-principles modeling shows that the oxidation process is much slower with the selenium-gold bond than the sulfur-gold bond, and the selenium-gold bond is strong enough to avoid bond breaking even when it is eventually oxidized. This proof of concept demonstrates that the extraordinarily stable SAMs derived from selenides are useful for long-lived molecular electronic devices and can possibly become important in many air-stable applications involving SAMs.

5.
Nat Commun ; 14(1): 5639, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704605

ABSTRACT

Highly-efficient molecular photoswitching occurs ex-situ but not to-date inside electronic devices due to quenching of excited states by background interactions. Here we achieve fully reversible in-situ mechano-optoelectronic switching in self-assembled monolayers (SAMs) of tetraphenylethylene molecules by bending their supporting electrodes to maximize aggregation-induced emission (AIE). We obtain stable, reversible switching across >1600 on/off cycles with large on/off ratio of (3.8 ± 0.1) × 103 and 140 ± 10 ms switching time which is 10-100× faster than other approaches. Multimodal characterization shows mechanically-controlled emission with UV-light enhancing the Coulomb interaction between the electrons and holes resulting in giant enhancement of molecular conductance. The best mechano-optoelectronic switching occurs in the most concave architecture that reduces ambient single-molecule conformational entropy creating artificially-tightened supramolecular assemblies. The performance can be further improved to achieve ultra-high switching ratio on the order of 105 using tetraphenylethylene derivatives with more AIE-active sites. Our results promise new applications from optimized interplay between mechanical force and optics in soft electronics.

6.
Adv Mater ; 35(26): e2300663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36965118

ABSTRACT

The study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions. It is demonstrated that the solvent reorganization energy plays an important role in the electron-hopping process and experimentally shown that it requires ≈100 meV for electron hopping through one heme group inside a hydrated protein molecule connected between two electrodes.


Subject(s)
Electrodes , Humans , Temperature , Electric Conductivity
7.
Chem Sci ; 13(34): 9914-9920, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128249

ABSTRACT

Singlet exciton fission (SF) is believed to have the potential to break the Shockley-Queisser limit for third-generation solar cell devices, so it has attracted great attention. Conventional linear acene based SF materials generally suffer from low triplet energy and poor photostability. We report herein two flavanthrene derivatives, EH-Fla and TIPS-Fla, as new photostable singlet exciton fission materials. These N-doped two-dimensional angular fused acenes have three sets of aromatic Clar sextets, making them significantly more stable than linear acenes with only one sextet. Time-resolved spectroscopy characterization reveals that the SF process occurs in the polycrystalline films of EH-Fla and TIPS-Fla, with maximal triplet yields of 32% and 159%, respectively. The SF processes of these two molecules are mediated by excimer states. In EH-Fla, the low-lying excimer prevents the SF process from occurring effectively, resulting in a low triplet yield. In contrast, the excimer state in TIPS-Fla is mixed with strong CT coupling, which prompts efficient SF and results in a high triplet yield. Our results show that flavanthrene is a promising SF chromophore for photoenergy conversion applications, while a fine-tune of the intermolecular interaction is crucial for achieving high SF efficiency.

8.
IEEE Trans Image Process ; 31: 3780-3792, 2022.
Article in English | MEDLINE | ID: mdl-35604972

ABSTRACT

In this paper, we study the cross-view geo-localization problem to match images from different viewpoints. The key motivation underpinning this task is to learn a discriminative viewpoint-invariant visual representation. Inspired by the human visual system for mining local patterns, we propose a new framework called RK-Net to jointly learn the discriminative Representation and detect salient Keypoints with a single Network. Specifically, we introduce a Unit Subtraction Attention Module (USAM) that can automatically discover representative keypoints from feature maps and draw attention to the salient regions. USAM contains very few learning parameters but yields significant performance improvement and can be easily plugged into different networks. We demonstrate through extensive experiments that (1) by incorporating USAM, RK-Net facilitates end-to-end joint learning without the prerequisite of extra annotations. Representation learning and keypoint detection are two highly-related tasks. Representation learning aids keypoint detection. Keypoint detection, in turn, enriches the model capability against large appearance changes caused by viewpoint variants. (2) USAM is easy to implement and can be integrated with existing methods, further improving the state-of-the-art performance. We achieve competitive geo-localization accuracy on three challenging datasets, i. e., University-1652, CVUSA and CVACT. Our code is available at https://github.com/AggMan96/RK-Net.

9.
Small ; 18(13): e2105484, 2022 04.
Article in English | MEDLINE | ID: mdl-35032140

ABSTRACT

Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.


Subject(s)
Metal-Organic Frameworks , Adsorption , Biology , Catalysis , Humans , Metal-Organic Frameworks/chemistry , Nitric Oxide
10.
Sci Bull (Beijing) ; 66(17): 1764-1772, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-36654384

ABSTRACT

The rational design and construction of novel two-dimensional (2D) carbon nitrides (CNs) beyond g-C3N4 is a hot topic in the fields of chemistry and materials. Inspired by the polymerisation of urea, we have prepared a series of novel C-C bridged heptazine CNs UOx (where x is the ratio of urea to oxamide, x = 1, 1.5, 2, 2.5, and 3), which are similar to (C6N7)n, upon the introduction of oxamide. As predicted using density functional theory (DFT) calculations, the conjugated structure of UOx was effectively extended from an individual heptazine to the entire material. Consequently, its bandgap was reduced to 2.05 eV, and its absorption band edge was significantly extended to 600 nm. Furthermore, its carrier transfer and separation were significantly enhanced, establishing its superior photocatalytic activity. The optimised UO2 exhibits a superior photocatalytic hydrogen production rate about 108.59 µmol h-1 (using 10 mg of catalyst) with an apparent quantum efficiency (AQE) of 36.12% and 0.33% at 420 and 600 nm, respectively, which is one of the most active novel CNs reported to date. Moreover, UO2 exhibits excellent photocatalytic activity toward the oxidation of diphenylhydrazine to azobenzene with conversion and selectivity reaching ~100%, which represents a promising highly efficient 2D CN material. Regarding phenols degradation, UO2 also displayed significantly higher activity and durability during the degradation of phenol when compared to traditional g-C3N4, highlighting its significant potential for application in energy, environment and photocatalytic organic reactions.

11.
RSC Adv ; 9(61): 35841-35846, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-35528110

ABSTRACT

The photochemical reduction of CO2 was studied in a 1-ethyl-3-methylimidazolium tetrafluoroborate, triethanolamine and water ([Emim]BF4 + TEOA + H2O) system under visible light irradiation. The integration of CdS and the Co-bpy complex, which acted as a photocatalyst and cocatalyst, respectively, was employed as an efficient catalytic system for the CO2-to-CO conversion. The utilization of [Emim]BF4 and water took advantage of their green properties. The amount of CO production showed that the test medium containing 10 vol% H2O was favourable for the catalytic performance of the CO2 reduction. In order to further study the factors that influenced the current system, the physical and spectroscopy properties were characterized by altering the composition ratio of the ingredients. Relevant parameters, including the viscosity, conductivity, solubility and coordination, were adjusted using the ratio of the H2O/[Emim]BF4 addition, resulting in a different catalytic performance. All of these attempts led to an optimal reaction condition for the CO2 reduction process.

12.
RSC Adv ; 8(37): 20543-20548, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35542372

ABSTRACT

A chemical system with enhanced efficiency for electron generation and transfer was constructed by the integration of TiO2 hollow spheres with [Co(bipy)3]2+. The introduction of [Co(bipy)3]2+ remarkably enhances the photocatalytic activity of pristine semiconductor photocatalysts for heterogeneous CO2 conversion, which is attributable to the acceleration of charge separation. Of particular interest is that the excellent photocatalytic activity of the heterogeneous catalysts can be utilised for a universal photocatalytic CO2 reduction system. Yields of 16.8 µmol CO and 6.6 µmol H2 can be obtained after 2 h of the photoredox reaction, and the apparent overall quantum yield was estimated to be 0.66% under irradiation at λ = 365 nm. The present findings clearly demonstrate that the integration of electron mediators with semiconductors is a feasible process for the design and development of efficient photochemical systems for CO2 conversion.

13.
RSC Adv ; 8(7): 3798-3802, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-35542908

ABSTRACT

We have first identified a new promotional mechanism of water in the photocatalytic conversion of CO2 into CO, which is different from the traditional role of proton source. High efficiency (44.5 µmol h-1) achieved through construction of a binary liquid system was determined by systematic research.

14.
Chem Asian J ; 9(9): 2468-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24986767

ABSTRACT

An efficient chemical system for electron generation and transfer is constructed by the integration of an electron mediator ([Co(bpy)3](2+); bpy=2,2'-bipyridine) with semiconductor photocatalysts. The introduction of [Co(bpy)3](2+) remarkably enhances the photocatalytic activity of pristine semiconductor photocatalysts for heterogeneous CO2 conversion; this is attributable to the acceleration of charge separation. Of particular interest is that the excellent photocatalytic activity of heterogeneous catalysts can be developed as a universal photocatalytic CO2 reduction system. The present findings clearly demonstrate that the integration of an electron mediator with semiconductors is a feasible process for the design and development of efficient photochemical systems for CO2 conversion.

15.
Phys Chem Chem Phys ; 16(28): 14656-60, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24921181

ABSTRACT

A noble-metal-free system for photochemical reduction of CO2 has been developed by integrating graphitic carbon nitride (g-C3N4) with a cobalt-containing zeolitic imidazolate framework (Co-ZIF-9). g-C3N4 acts as a semiconductor photocatalyst, whereas Co-ZIF-9 is a cocatalyst that facilitates the capture/concentration of CO2 and promotes light-induced charge separation. The two materials cooperate efficiently to catalyze CO2-to-CO conversion upon visible light illumination under mild reaction conditions. A (13)C-labelled isotropic experiment proved that CO2 is the carbon source of the produced CO. Even without noble metals, the system still achieved an apparent quantum yield of 0.9 percent. The system displayed high photocatalytic stability, without noticeable alterations in the chemical and crystal structures of g-C3N4 and Co-ZIF-9 after the reaction.

16.
Angew Chem Int Ed Engl ; 53(4): 1034-8, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24339134

ABSTRACT

Metal-organic frameworks (MOFs) have shown great promise for CO2 capture and storage. However, the operation of chemical redox functions of framework substances and organic CO2 -trapping entities which are spatially linked together to catalyze CO2 conversion has had much less attention. Reported herein is a cobalt-containing zeolitic imidazolate framework (Co-ZIF-9) which serves as a robust MOF cocatalyst to reduce CO2 by cooperating with a ruthenium-based photosensitizer. The catalytic turnover number of Co-ZIF-9 was about 450 within 2.5 hours under mild reaction conditions, while still keeping its original reactivity during prolonged operation.

SELECTION OF CITATIONS
SEARCH DETAIL
...