Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960224

ABSTRACT

Spinal cord injury (SCI) represents a catastrophic neurological condition resulting in long-term loss of motor, autonomic, and sensory functions. Recently, ferroptosis, an iron-regulated form of cell death distinct from apoptosis, has emerged as a potential therapeutic target for SCI. In this study, we developed an injectable hydrogel composed of carboxymethyl cellulose (CMC), and quaternized chitosan (QCS), loaded with modified polydopamine nanoparticles (PDA NPs), referred to as CQP hydrogel. This hydrogel effectively scavenged reactive oxygen species (ROS), prevented the accumulation of Fe2+ and lipid peroxidation associated with ferroptosis, and restored mitochondrial functions in primary neuronal cells. When administered to animal models (rats) with SCI, the CQP hydrogels improved motor function by regulating iron homeostasis, inhibiting ferroptosis, and mitigating oxidative stress injury. Both in vitro and in vivo studies corroborated the capacity of CQP hydrogels to promote the shift from M1 to M2 polarization of microglia/macrophages. These findings suggest that CQP hydrogels, functioning as a localized iron-chelating system, have potential as biomaterials to enhance recovery from SCI by targeting ferroptosis and modulating anti-inflammatory macrophages activity.

2.
Small ; : e2402915, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845481

ABSTRACT

The bismuth anode has garnered significant attention due to its high theoretical Na-storage capacity (386 mAh g-1). There have been numerous research reports on the stable solid electrolyte interphase (SEI) facilitated by electrolytes utilizing ether solvents. In this contribution, cyclic tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MeTHF) ethers are employed as solvents to investigate the sodium-ion storage properties of bismuth anodes. A series of detailed characterizations are utilized to analyze the impact of electrolyte solvation structure and SEI chemical composition on the kinetics of sodium-ion storage. The findings reveal that bismuth anodes in both THF and MeTHF-based electrolytes exhibit exceptional rate performance at low current densities, but in THF-based electrolytes, the reversible capacity is higher at high current densities (316.7 mAh g-1 in THF compared to 9.7 mAh g-1 in MeTHF at 50 A g-1). This stark difference is attributed to the formation of an inorganic-rich, thin, and uniform SEI derived from THF-based electrolyte. Although the SEI derived from MeTHF-based electrolyte also consists predominantly of inorganic components, it is thicker and contains more organic species compared to the THF-derived SEI, impeding charge transfer and ion diffusion. This study offers valuable insights into the utilization of cyclic ether electrolytes for Na-ion batteries.

3.
J Transl Med ; 22(1): 523, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822359

ABSTRACT

OBJECTIVE: Diabetic macular edema (DME) is the leading cause of visual impairment in patients with diabetes mellitus (DM). The goal of early detection has not yet achieved due to a lack of fast and convenient methods. Therefore, we aim to develop and validate a prediction model to identify DME in patients with type 2 diabetes mellitus (T2DM) using easily accessible systemic variables, which can be applied to an ophthalmologist-independent scenario. METHODS: In this four-center, observational study, a total of 1994 T2DM patients who underwent routine diabetic retinopathy screening were enrolled, and their information on ophthalmic and systemic conditions was collected. Forward stepwise multivariable logistic regression was performed to identify risk factors of DME. Machine learning and MLR (multivariable logistic regression) were both used to establish prediction models. The prediction models were trained with 1300 patients and prospectively validated with 104 patients from Guangdong Provincial People's Hospital (GDPH). A total of 175 patients from Zhujiang Hospital (ZJH), 115 patients from the First Affiliated Hospital of Kunming Medical University (FAHKMU), and 100 patients from People's Hospital of JiangMen (PHJM) were used as external validation sets. Area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity, and specificity were used to evaluate the performance in DME prediction. RESULTS: The risk of DME was significantly associated with duration of DM, diastolic blood pressure, hematocrit, glycosylated hemoglobin, and urine albumin-to-creatinine ratio stage. The MLR model using these five risk factors was selected as the final prediction model due to its better performance than the machine learning models using all variables. The AUC, ACC, sensitivity, and specificity were 0.80, 0.69, 0.80, and 0.67 in the internal validation, and 0.82, 0.54, 1.00, and 0.48 in prospective validation, respectively. In external validation, the AUC, ACC, sensitivity and specificity were 0.84, 0.68, 0.90 and 0.60 in ZJH, 0.89, 0.77, 1.00 and 0.72 in FAHKMU, and 0.80, 0.67, 0.75, and 0.65 in PHJM, respectively. CONCLUSION: The MLR model is a simple, rapid, and reliable tool for early detection of DME in individuals with T2DM without the needs of specialized ophthalmologic examinations.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Early Diagnosis , Macular Edema , Humans , Diabetes Mellitus, Type 2/complications , Macular Edema/complications , Macular Edema/diagnosis , Macular Edema/blood , Male , Female , Diabetic Retinopathy/diagnosis , Middle Aged , Risk Factors , ROC Curve , Aged , Reproducibility of Results , Machine Learning , Multivariate Analysis , Area Under Curve , Logistic Models
4.
Int J Biol Macromol ; 271(Pt 2): 132632, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38797298

ABSTRACT

Current limitations in mechanical performance and foreign body reactions (FBR) often lead to implant failure, restricting the application of bioceramic scaffolds. This study presents a novel 3D-printed scaffold that combines the release of anti-inflammatory drugs with osteogenic stimulation. Initially, the inorganic and organic phases were integrated to ensure the scaffold's mechanical integrity through catechol chemistry and the electrostatic interactions between tannic acid and quaternary ammonium chitosan. Subsequently, layers of polydopamine-encapsulated puerarin-loaded zeolitic imidazolate framework-8 (ZIF-8) were self-assembled onto the stent's surface, creating the drug-loaded scaffold that improved drug release without altering the scaffold's structure. Compared with unloaded scaffolds, the puerarin-loaded scaffold demonstrated excellent osteogenic differentiation properties along with superior anti-inflammatory and osteogenic effects in a range of in vitro and in vivo studies. RNA sequencing clarified the role of the TNF and NF/κB signaling pathways in these effects, further supporting the scaffold's osteogenic potential. This study introduces a novel approach for creating drug-loaded scaffolds, providing a unique method for treating cancellous bone defects.


Subject(s)
Alginates , Calcium Phosphates , Chitosan , Isoflavones , Osteogenesis , Tannins , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Isoflavones/chemistry , Isoflavones/pharmacology , Osteogenesis/drug effects , Animals , Alginates/chemistry , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Tannins/chemistry , Tannins/pharmacology , Bone and Bones/drug effects , Mice , Bone Regeneration/drug effects , Cell Differentiation/drug effects , Humans , Polyphenols
5.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607127

ABSTRACT

This study employs a combined computational and experimental approach to elucidate the mechanisms governing the interaction between lignin and urea, impacting lignin dissolution and subsequent aggregation behavior. Molecular dynamics (MD) simulations reveal how the urea concentration and temperature influence lignin conformation and interactions. Higher urea concentrations and temperatures promote lignin dispersion by disrupting intramolecular interactions and enhancing solvation. Density functional theory (DFT) calculations quantitatively assess the interaction energy between lignin and urea, supporting the findings from MD simulations. Anti-solvent precipitation demonstrates that increasing the urea concentration hinders the self-assembly of lignin nanoclusters. The findings provide valuable insights for optimizing lignin biorefinery processes by tailoring the urea concentration and temperature for efficient extraction and dispersion. Understanding the influence of urea on lignin behavior opens up avenues for designing novel lignin-based materials with tailored properties. This study highlights the potential for the synergetic application of MD simulations and DFT calculations to unravel complex material interactions at the atomic level.

6.
Br J Cancer ; 130(9): 1434-1440, 2024 May.
Article in English | MEDLINE | ID: mdl-38472421

ABSTRACT

BACKGROUND: The early-onset rectal cancer with rapidly increasing incidence is considered to have distinct clinicopathological and molecular profiles with high-risk features. This leads to challenges in developing specific treatment strategies for early-onset rectal cancer patients and questions of whether early-onset locally advanced rectal cancer (LARC) needs aggressive neoadjuvant treatment. METHODS: In this post hoc analysis of FOWARC trial, we investigated the role of preoperative radiation in early-onset LARC by comparing the clinicopathological profiles and short-term and long-term outcomes between the early-onset and late-onset LARCs. RESULTS: We revealed an inter-tumor heterogeneity of clinical profiles and treatment outcomes between the early-onset and late-onset LARCs. The high-risk features were more prevalent in early-onset LARC. The neoadjuvant radiation brought less benefits of tumor response and more risk of complications in early-onset group (pCR: OR = 3.75, 95% CI = 1.37-10.27; complications: HR = 11.35, 95% CI = 1.46-88.31) compared with late-onset group (pCR: OR = 5.33, 95% CI = 1.83-15.58; complications: HR = 5.80, 95% CI = 2.32-14.49). Furthermore, the addition of radiation to neoadjuvant chemotherapy didn't improve long-term OS (HR = 1.37, 95% CI = 0.49-3.87) and DFS (HR = 1.05, 95% CI = 0.58-1.90) for early-onset patients. CONCLUSION: Preoperative radiation plus chemotherapy may not be superior to the chemotherapy alone in the early-onset LARC. Our findings provide insight into the treatment of early-onset LARC by interrogating the aggressive treatment and alternative regimens.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Neoadjuvant Therapy/methods , Male , Female , Middle Aged , Aged , Chemoradiotherapy/methods , Adult , Treatment Outcome , Age of Onset
7.
Int J Surg ; 110(6): 3230-3236, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38348893

ABSTRACT

IMPORTANCE: Patients with pathological complete response (pCR) of rectal cancer following neoadjuvant treatment had better oncological outcomes. However, reliable methods for accurately predicting pCR remain limited. OBJECTIVE: To evaluate whether transrectal ultrasound-guided tru-cut biopsy (TRUS-TCB) adds diagnostic value to conventional modalities for predicting pathological complete response in patients with rectal cancer after neoadjuvant treatment. DESIGN, SETTING, AND PARTICIPANTS: This study evaluated data of patients with rectal cancer who were treated with neoadjuvant treatment and reassessed using TRUS-TCB and conventional modalities before surgery. This study is registered with ClinicalTrials.gov. MAIN OUTCOMES AND MEASURES: The primary outcome was accuracy, along with secondary outcomes including sensitivity, specificity, negative predictive value, and positive predictive value in predicting tumour residues. Final surgical pathology was used as reference standard. RESULTS: Between June 2021 and June 2022, a total of 74 patients were enroled, with 63 patients ultimately evaluated. Among them, 17 patients (28%) exhibited a complete pathological response. TRUS-TCB demonstrated an accuracy of 0.71 (95% CI, 0.58-0.82) in predicting tumour residues. The combined use of TRUS-TCB and conventional modalities significantly improved diagnostic accuracy compared to conventional modalities alone (0.75 vs. 0.59, P =0.02). Furthermore, TRUS-TCB correctly reclassified 52% of patients erroneously classified as having a complete clinical response by conventional methods. The occurrence of only one mild adverse event was observed. CONCLUSIONS AND RELEVANCE: TRUS-TCB proves to be a safe and accessible tool for reevaluation with minimal complications. The incorporation of TRUS-TCB alongside conventional methods leads to enhanced diagnostic performance.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/pathology , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Male , Female , Middle Aged , Prospective Studies , Aged , Image-Guided Biopsy/methods , Adult , Ultrasonography, Interventional , Rectum/pathology , Rectum/surgery , Rectum/diagnostic imaging , Predictive Value of Tests , Treatment Outcome
8.
ACS Nano ; 18(4): 3763-3774, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38235647

ABSTRACT

Zinc sulfide is a promising high-capacity anode for practical sodium-ion batteries, considering its high capacity and the low cost of zinc and sulfur sources. However, the pulverization of particulate zinc sulfide causes active mass collapse and penetration-induced short circuits of batteries. Herein, a zinc sulfide encapsulated in a nitrogen-doped carbon shell (ZnS@NC) was developed for high-performance anodes. The confinement effect of nitrogen-doped carbon stabilizes the active mass structure during cycling thanks to the robust chemically and electronically bonded connections between nitrogen-doped carbon and zinc sulfide nanoparticles. Furthermore, the cycling stability of the ZnS@NC anode is boosted by the robust inorganic-rich solid electrolyte interphase (SEI) formed in cyclic and linear ether-based electrolytes. The ZnS@NC anode displayed a reversible specific capacity of 584 mAh g-1, an excellent rate capability of 327 mAh g-1 at 70 A g-1, and a highly stable cycling performance over 10000 cycles. This work provides a practical and promising approach to designing stable conversion anodes for high-performance sodium-ion batteries.

9.
Inflamm Bowel Dis ; 30(1): 90-102, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37406645

ABSTRACT

BACKGROUND: Macrophage (Mφ) activation plays a critical role in the inflammatory response. Activated Mφ go through profound reprogramming of cellular metabolism. However, changes in their intracellular energy metabolism and its effect on inflammatory responses in Crohn's disease (CD) remain currently unclear. The aim of this study is to explore metabolic signatures of CD14+ Mφ and their potential role in CD pathogenesis as well as the underlying mechanisms. METHODS: CD14+ Mφ were isolated from peripheral blood or intestinal tissues of CD patients and control subjects. Real-time flux measurements and enzyme-linked immunosorbent assay were used to determine the inflammatory states of Mφ and metabolic signatures. Multiple metabolic routes were suppressed to determine their relevance to cytokine production. RESULTS: Intestinal CD14+ Mφ in CD patients exhibited activated glycolysis compared with those in control patients. Specifically, macrophagic glycolysis in CD largely induced inflammatory cytokine release. The intestinal inflammatory microenvironment in CD elicited abnormal glycolysis in Mφ. Mechanistically, CD14+ Mφ derived exosomes expressed membrane tumor necrosis factor (TNF), which engaged TNFR2 and triggered glycolytic activation via TNF/nuclear factor κB autocrine and paracrine signaling. Importantly, clinically applicable anti-TNF antibodies effectively prevented exosomal membrane TNF-induced glycolytic activation in CD14+ Mφ. CONCLUSIONS: CD14+ Mφ take part in CD pathogenesis by inducing glycolytic activation via membrane TNF-mediated exosomal autocrine and paracrine signaling. These results provide novel insights into pathogenesis of CD and enhance understanding of the mechanisms of anti-TNF agents.


Subject(s)
Crohn Disease , Humans , Crohn Disease/pathology , Tumor Necrosis Factor Inhibitors , Tumor Necrosis Factor-alpha/metabolism , Macrophages/metabolism , Cytokines/metabolism , Glycolysis
10.
ACS Biomater Sci Eng ; 9(11): 6472-6480, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37787382

ABSTRACT

The most challenging problem in oral and maxillofacial surgery is the reconstruction of defects for the oral and maxillofacial complex. Transfer of different autografts is known as the "gold standard" for the reconstruction of bone defects in the oral and maxillofacial region. Graft harvesting, however, can lead to many complications, such as donor-site morbidity, surgical time-consuming, etc. Three-dimensional (3D) printing technology is an innovative technique that allows the fabrication of personalized plates and scaffolds to fit the precise anatomy of an individual's defect. In this study, a selective laser melting 3D-printed Ti-6Al-4 V plate with a honeycomb was designed, and its physical and biological features were characterized. The personalized 3D-printed scaffold and commercialized titanium reconstruction plate were applied to reconstruct a 4 cm mandibular defect in a beagle dog. Effects of the treatment were analyzed radiologically and histologically. Our results showed that the application of a 3D-printed plate with a honeycomb achieved good biocompatibility and osseointegration and has potential clinical application.


Subject(s)
Mandible , Titanium , Dogs , Animals , Titanium/chemistry , Mandible/diagnostic imaging , Mandible/surgery , Printing, Three-Dimensional , Lasers
11.
Biochem Biophys Res Commun ; 681: 157-164, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37776747

ABSTRACT

Previous investigations have reported on the ability of copper (Cu)-bearing biomaterials to accelerate vascular formation and bone regeneration. However, few studies have explored the effects of Cu-bearing materials on the interactions between angiogenesis and osteogenesis. Therefore, in this study, we prepared Cu-containing alloys using selective laser melting (SLM) technology and investigated the impact of preosteoblasts seeded on Ti6Al4V-4.5Cu alloy on angiogenesis. Our results indicated that Ti6Al4V-4.5Cu alloys increased the expression of proangiogenic genes and proteins in preosteoblasts, which further stimulated vascular formation in endothelial cells. Besides, we discovered that the biological effects of the Ti6Al4V-4.5Cu alloy were partly attributed to the release of Cu ions. In short, our research demonstrated the ability of Ti6Al4V-4.5Cu alloys to promote the coupling of angiogenesis and osteogenesis by releasing Cu ions.


Subject(s)
Osteogenesis , Titanium , Titanium/pharmacology , Copper/pharmacology , Endothelial Cells , Alloys/pharmacology , Ions
12.
Front Bioeng Biotechnol ; 11: 1193605, 2023.
Article in English | MEDLINE | ID: mdl-37229495

ABSTRACT

Bacterial infection is a major challenge that could threaten the patient's life in repairing bone defects with implant materials. Developing functional scaffolds with an intelligent antibacterial function that can be used for bone repair is very important. We constructed a drug delivery (HA@TA-CS/SA) scaffold with curcumin-loaded dendritic mesoporous organic silica nanoparticles (DMON@Cur) via 3D printing for antibacterial bone repair. Inspired by the adhesion mechanism of mussels, the HA@TA-CS/SA scaffold of hydroxyapatite (HA) and chitosan (CS) is bridged by tannic acid (TA), which in turn binds sodium alginate (SA) using electrostatic interactions. The results showed that the HA@TA-CS/SA composite scaffold had better mechanical properties compared with recent literature data, reaching 68.09 MPa. It displayed excellent degradation and mineralization capabilities with strong biocompatibility in vitro. Furthermore, the antibacterial test results indicated that the curcumin-loaded scaffold inhibited S.aureus and E.coli with 99.99% and 96.56% effectiveness, respectively. These findings show that 3D printed curcumin-loaded HA@TA-CS/SA scaffold has considerable promise for bone tissue engineering.

13.
Small Methods ; 7(9): e2300462, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37254264

ABSTRACT

Lignin, rich in ß-O-4 bonds and aromatic structure, is a renewable and potential resource for value-added chemicals and promoting H2 evolution. However, direct photo-reforming lignin remains a huge challenge due to its recalcitrant structure. Herein, a collaborative strategy is proposed by dispersing Pt on zinc-vacancy-riched ZnIn2 S4 (Pt/VZn -ZIS) for revealing the effect of lignin structure during photo-reforming process with lignin models. And a series of theoretical calculations and experimental results show that lignin model substances with more nucleophilic group structures will have a stronger tendency to occur the photo-reforming reactions. In addition, benefiting of Pt-S electronic channel is formed by occupying Pt atom onto zinc vacancies in ZnIn2 S4 , which can effectively reduce the energy barrier of H2 evolution and accompany the selective oxidation of lignin model from Cα-OH to Cα = O under simulated sunlight. The natural lignin is used to further demonstrate this selective oxidation mechanism. The presented work demonstrates the photo-reforming lignin model mechanism and the influence of lignin-structure during the process of photo-reforming.

14.
J Cancer Res Clin Oncol ; 149(11): 8897-8912, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154929

ABSTRACT

BACKGROUND: Neoadjuvant therapy followed by radical surgery is recommended for locally advanced rectal cancer (LARC). But radiotherapy can cause potential adverse effects. The therapeutic outcomes, postoperative survival and relapse rates between neoadjuvant chemotherapy (N-CT) and neoadjuvant chemoradiotherapy (N-CRT) patients have rarely been studied. METHODS: From February 2012 to April 2015, patients with LARC who underwent N-CT or N-CRT followed by radical surgery at our center were included. Pathologic response, surgical outcomes, postoperative complications and survival outcomes (including overall survival [OS], disease-free survival [DFS], cancer-specific survival [CSS] and locoregional recurrence-free survival [LRFS]) were analyzed and compared. Concurrently, the Surveillance, Epidemiology, and End Results Program (SEER) database was used to compare OS in an external source. RESULTS: A total of 256 patients were input into the propensity score-matching (PSM) analysis, and 104 pairs remained after PSM. After PSM, the baseline data were well matched and there was a significantly lower tumor regression grade (TRG) (P < 0.001), more postoperative complications (P = 0.009) (especially anastomotic fistula, P = 0.003) and a longer median hospital stay (P = 0.049) in the N-CRT group than in the N-CT group. No significant difference was observed in OS (P = 0.737), DFS (P = 0.580), CSS (P = 0.920) or LRFS (P = 0.086) between the N-CRT group and the N-CT group. In the SEER database, patients who received N-CT had similar OS in both TNM II (P = 0.315) and TNM III stages (P = 0.090) as those who received N-CRT. CONCLUSION: N-CT conferred similar survival benefits but caused fewer complications than N-CRT. Thus, it could be an alternative treatment of LARC.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Treatment Outcome , Propensity Score , Neoplasm Staging , Rectal Neoplasms/pathology , Chemoradiotherapy/methods , Retrospective Studies
15.
Clin Transl Med ; 13(5): e1279, 2023 05.
Article in English | MEDLINE | ID: mdl-37203239

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) modification is an emerging epigenetic regulatory mechanism in tumourigenesis. Considering that AlkB homolog 5 (ALKBH5) is a well-described m6A demethylase in previous enzyme assays, we aimed to investigate the role of m6A methylation alteration conferred by disturbed ALKBH5 in colorectal cancer (CRC) development. METHODS: Expression of ALKBH5 and its correlation with clinicopathological characteristics of CRC were evaluated using the prospectively maintained institutional database. The molecular role and underlying mechanism of ALKBH5 in CRC were explored using in vitro and in vivo experiments with methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA-seq, MeRIP-qPCR, RIP-qPCR and luciferase reporter assays. RESULTS: ALKBH5 expression was significantly upregulated in CRC tissues compared to the paired adjacent normal tissues, and higher expression of ALKBH5 was independently associated with worse overall survival in CRC patients. Functionally, ALKBH5 promoted the proliferative, migrative and invasive abilities of CRC cells in vitro and enhanced subcutaneous tumour growth in vivo. Mechanistically, RAB5A was identified as the downstream target of ALKBH5 in CRC development, and ALKBH5 posttranscriptionally activated RAB5A by m6A demethylation, which impeded the YTHDF2-mediated degradation of RAB5A mRNA. In addition, we demonstrated that dysregulation of the ALKBH5-RAB5A axis could affect the tumourigenicity of CRC. CONCLUSIONS: ALKBH5 facilitates the progression of CRC by augmenting the expression of RAB5A via an m6A-YTHDF2-dependent manner. Our findings suggested that ALKBH5-RAB5A axis might serve as valuable biomarkers and effective therapeutic targets for CRC.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Colorectal Neoplasms , rab5 GTP-Binding Proteins , Humans , Adenosine/genetics , AlkB Homolog 5, RNA Demethylase/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , RNA-Binding Proteins , rab5 GTP-Binding Proteins/genetics
16.
Heliyon ; 9(5): e15966, 2023 May.
Article in English | MEDLINE | ID: mdl-37215849

ABSTRACT

Background: Aging confers an increased risk of developing cancer, and the global burden of cancer is cumulating as human longevity increases. Providing adequate care for old patients with rectal cancer is challenging and complex. Method: A total of 428 and 44,788 patients diagnosed with non-metastatic rectal cancer from a referral tertiary care center (SYSU cohort) and the Surveillance Epidemiology and End Results database (SEER cohort) were included. Patients were categorized into old (over 65 years) and young (aged 50-65 years) groups. An age-specific clinical atlas of rectal cancer was generated, including the demographic and clinicopathological features, molecular profiles, treatment strategies, and clinical outcomes. Results: Old and young patients were similar in clinicopathological risk factors and molecular features, including TNM stage, tumor location, tumor differentiation, tumor morphology, lymphovascular invasion, and perineural invasion. However, old patients had significantly worse nutritional status and more comorbidities than young patients. In addition, old age was independently associated with less systemic cancer treatment (adjusted odds ratio 0.294 [95% CI 0.184-0.463, P < 0.001]). We found that old patients had significantly worse overall survival (OS) outcomes in both SYSU (P < 0.001) and SEER (P < 0.001) cohorts. Moreover, the death and recurrence risk of old patients in the subgroup not receiving chemo/radiotherapy (P < 0.001 for OS, and P = 0.046 for time to recurrence [TTR]) reverted into no significant risk in the subgroup receiving chemo/radiotherapy. Conclusions: Although old patients had similar tumor features to young patients, they had unfavorable survival outcomes associated with insufficient cancer care from old age. Specific trials with comprehensive geriatric assessment for old patients are needed to identify the optimal treatment regimens and improve unmet cancer care. Study registration: The study was registered on the research registry with the identifier of researchregistry 7635.

17.
Small ; 19(35): e2302071, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37104851

ABSTRACT

Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g-1 ). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g-1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g-1 . Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.

18.
Front Microbiol ; 14: 1016872, 2023.
Article in English | MEDLINE | ID: mdl-36910172

ABSTRACT

The intestinal microbiota and fecal metabolome have been shown to play a vital role in human health, and can be affected by genetic and environmental factors. We found that individuals with Down syndrome (DS) had abnormal serum cytokine levels indicative of a pro-inflammatory environment. We investigated whether these individuals also had alterations in the intestinal microbiome. High-throughput sequencing of bacterial 16S rRNA gene in fecal samples from 17 individuals with DS and 23 non-DS volunteers revealed a significantly higher abundance of Prevotella, Escherichia/Shigella, Catenibacterium, and Allisonella in individuals with DS, which was positively associated with the levels of pro-inflammatory cytokines. GC-TOF-MS-based fecal metabolomics identified 35 biomarkers (21 up-regulated metabolites and 14 down-regulated metabolites) that were altered in the microbiome of individuals with DS. Metabolic pathway enrichment analyses of these biomarkers showed a characteristic pattern in DS that included changes in valine, leucine, and isoleucine biosynthesis and degradation; synthesis and degradation of ketone bodies; glyoxylate and dicarboxylate metabolism; tyrosine metabolism; lysine degradation; and the citrate cycle. Treatment of mice with fecal bacteria from individuals with DS or Prevotella copri significantly altered behaviors often seen in individuals with DS, such as depression-associated behavior and impairment of motor function. These studies suggest that changes in intestinal microbiota and the fecal metabolome are correlated with chronic inflammation and behavior disorders associated with DS.

19.
Biomater Adv ; 147: 213315, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746101

ABSTRACT

The nature of aseptic prosthetic loosening mainly relates to the wear particles that induce inflammation and subsequent osteoclastogenesis. The ideal approach to impede wear particle-induced osteolysis should minimize inflammation and osteoclastogenesis. In this work, Co29Cr9W3Cu particles were used as a research model for the first time to explore the response of Co29Cr9W3Cu particles to inflammatory response and osteoclast activation in vitro and in vivo by using Co29Cr9W particles as the control group. In vitro studies showed that the Co29Cr9W3Cu particles could promote the generation of M2-phenotype macrophages and increase the expression level of anti-inflammatory factor IL-10, while inhibiting the formation of M1-phenotype macrophages and down-regulating the expression of inflammatory factors TNF-α, IL-6 and IL-1ß; More importantly, the Co29Cr9W3Cu particles reduced the expression of NF-κB and downstream osteoclast related-specific transcription marker genes, such as TRAP, NFATc1, and Cath-K; In vivo results indicated that the Co29Cr9W3Cu particles exposed to murine calvarial contributed to decreasing the amount of osteoclast and osteolysis area. These findings collectively demonstrated that Cu-bearing cobalt-chromium alloy may potentially delay the development of aseptic prosthetic loosening induced by wear particles, which is expected to provide evidence of Co29Cr9W3Cu alloy as an alternative material of joint implants with anti-wear associated osteolysis.


Subject(s)
Osteogenesis , Osteolysis , Animals , Mice , Osteogenesis/genetics , Osteolysis/chemically induced , Copper , Chromium/adverse effects , Cobalt/adverse effects , Inflammation/chemically induced
20.
Radiother Oncol ; 183: 109550, 2023 06.
Article in English | MEDLINE | ID: mdl-36813177

ABSTRACT

BACKGROUND: Accurate outcome prediction prior to treatment can facilitate trial design and clinical decision making to achieve better treatment outcome. METHOD: We developed the DeepTOP tool with deep learning approach for region-of-interest segmentation and clinical outcome prediction using magnetic resonance imaging (MRI). DeepTOP was constructed with an automatic pipeline from tumor segmentation to outcome prediction. In DeepTOP, the segmentation model used U-Net with a codec structure, and the prediction model was built with a three-layer convolutional neural network. In addition, the weight distribution algorithm was developed and applied in the prediction model to optimize the performance of DeepTOP. RESULTS: A total of 1889 MRI slices from 99 patients in the phase III multicenter randomized clinical trial (NCT01211210) on neoadjuvant treatment for rectal cancer was used to train and validate DeepTOP. We systematically optimized and validated DeepTOP with multiple devised pipelines in the clinical trial, demonstrating a better performance than other competitive algorithms in accurate tumor segmentation (Dice coefficient: 0.79; IoU: 0.75; slice-specific sensitivity: 0.98) and predicting pathological complete response to chemo/radiotherapy (accuracy: 0.789; specificity: 0.725; and sensitivity: 0.812). DeepTOP is a deep learning tool that could avoid manual labeling and feature extraction and realize automatic tumor segmentation and treatment outcome prediction by using the original MRI images. CONCLUSION: DeepTOP is open to provide a tractable framework for the development of other segmentation and predicting tools in clinical settings. DeepTOP-based tumor assessment can provide a reference for clinical decision making and facilitate imaging marker-driven trial design.


Subject(s)
Image Processing, Computer-Assisted , Rectal Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Algorithms , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Treatment Outcome , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...