Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Speech Lang Hear Res ; 63(7): 2202-2218, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32610028

ABSTRACT

Purpose Given the established linear relationship between neck surface vibration magnitude and mean subglottal pressure (Ps) in vocally healthy speakers, the purpose of this study was to better understand the impact of the presence of a voice disorder on this baseline relationship. Method Data were obtained from participants with voice disorders representing a variety of glottal conditions, including phonotraumatic vocal hyperfunction, nonphonotraumatic vocal hyperfunction, and unilateral vocal fold paralysis. Participants were asked to repeat /p/-vowel syllable strings from loud-to-soft loudness levels in multiple vowel contexts (/pa/, /pi/, /pu/) and pitch levels (comfortable, higher than comfortable, lower than comfortable). Three statistical metrics were computed to analyze the regression line between neck surface accelerometer (ACC) signal magnitude and Ps within and across pitch, vowel, and voice disorder category: coefficient of determination (r 2), slope, and intercept. Three linear mixed-effects models were used to evaluate the impact of voice disorder category, pitch level, and vowel context on the relationship between ACC signal magnitude and Ps. Results The relationship between ACC signal magnitude and Ps was statistically different in patients with voice disorders than in vocally healthy controls; patients exhibited higher levels of Ps given similar values of ACC signal magnitude. Negligible effects were found for pitch condition within each voice disorder category, and negligible-to-small effects were found for vowel context. The mean of patient-specific r 2 values was .63, ranging from .13 to .92. Conclusions The baseline, linear relationship between ACC signal magnitude and Ps is affected by the presence of a voice disorder, with the relationship being participant-specific. Further work is needed to improve ACC-based prediction of Ps, across treatment, and during naturalistic speech production.


Subject(s)
Voice Disorders , Voice , Humans , Phonation , Speech Acoustics , Vibration , Voice Disorders/diagnosis
2.
J Speech Lang Hear Res ; 62(9): 3339-3358, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31518510

ABSTRACT

Purpose The purpose of this study was to evaluate the effects of nonmodal phonation on estimates of subglottal pressure (Ps) derived from the magnitude of a neck-surface accelerometer (ACC) signal and to confirm previous findings regarding the impact of vowel contexts and pitch levels in a larger cohort of participants. Method Twenty-six vocally healthy participants (18 women, 8 men) were asked to produce a series of p-vowel syllables with descending loudness in 3 vowel contexts (/a/, /i/, and /u/), 3 pitch levels (comfortable, high, and low), and 4 elicited phonatory conditions (modal, breathy, strained, and rough). Estimates of Ps for each vowel segment were obtained by averaging the intraoral air pressure plateau before and after each segment. The root-mean-square magnitude of the neck-surface ACC signal was computed for each vowel segment. Three linear mixed-effects models were used to statistically assess the effects of vowel, pitch, and phonatory condition on the linear relationship (slope and intercept) between Ps and ACC signal magnitude. Results Results demonstrated statistically significant linear relationships between ACC signal magnitude and Ps within participants but with increased intercepts for the nonmodal phonatory conditions; slopes were affected to a lesser extent. Vowel and pitch contexts did not significantly affect the linear relationship between ACC signal magnitude and Ps. Conclusion The classic linear relationship between ACC signal magnitude and Ps is significantly affected when nonmodal phonation is produced by a speaker. Future work is warranted to further characterize nonmodal phonatory characteristics to improve the ACC-based prediction of Ps during naturalistic speech production.


Subject(s)
Glottis/physiology , Neck/physiology , Phonation/physiology , Phonetics , Pitch Discrimination/physiology , Acceleration , Accelerometry , Adult , Air Pressure , Female , Healthy Volunteers , Humans , Linear Models , Male , Speech Production Measurement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...