Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 56(3): 2224-2233, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30006761

ABSTRACT

Previous studies showed that neonatal dexamethasone treatment (NDT) transiently impaired hippocampal function in male rats. Hippocampal estrogen receptors (ERs) participate in avoidance learning. As previous studies focused on males only, this study was aimed to investigate the NDT effects on the hippocampal function of female rats. Newborn Wistar female rats were subjected to a tapering dose of dexamethasone (0.5 mg, 0.3 mg, and 0.1 mg/kg, subcutaneously) from postnatal days 1 to 3 and were subjected to experiments at the age of 6 weeks (adolescence). Brain slice extracellular recording and the inhibitory avoidance (IA) test were used to evaluate the NDT effects on hippocampal function. The results showed that NDT completely blocked the hippocampal long-term potentiation (LTP) formation and IA learning of adolescents. The expression of hippocampal estrogen receptor alpha (ERα) was attenuated in NDT subjects. Reduced histone acetylation of the ERα gene was found, possibly explaining the reduced hippocampal ERα expression in NDT female rats. Suprafusion of estradiol (E2) partially restored the hippocampal LTP formation in adolescent NDT female rats. Coadministration of the histone deacetylase inhibitor trichostatin-A restored the hippocampal ERα expression, hippocampal LTP formation, and IA learning in adolescent NDT female rats. Collectively, these results suggested that NDT has an epigenetic modulation effect on the expression of hippocampal ERα, which is responsible for its adverse effect on hippocampal function.


Subject(s)
Dexamethasone/pharmacology , Estrogen Receptor alpha/metabolism , Glucocorticoids/pharmacology , Hippocampus/drug effects , Animals , Avoidance Learning/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Female , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...