Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cell Chem Biol ; 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36513079

ABSTRACT

While it is well known that expression levels of metabolic enzymes regulate the metabolic state of the cell, there is mounting evidence that the converse is also true, that metabolite levels themselves can modulate gene expression via epigenetic modifications and transcriptional regulation. Here we focus on the one-carbon metabolic pathway, which provides the essential building blocks of many classes of biomolecules, including purine nucleotides, thymidylate, serine, and methionine. We review the epigenetic roles of one-carbon metabolic enzymes and their associated metabolites and introduce an interactive computational resource that places enzyme essentiality in the context of metabolic pathway topology. Therefore, we briefly discuss examples of metabolic condensates and higher-order complexes of metabolic enzymes downstream of one-carbon metabolism. We speculate that they may be required to the formation of transcriptional condensates and gene expression control. Finally, we discuss new ways to exploit metabolic pathway compartmentalization to selectively target these enzymes in cancer.

2.
Nat Metab ; 3(5): 651-664, 2021 05.
Article in English | MEDLINE | ID: mdl-33972798

ABSTRACT

Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Nucleoside Transport Proteins/metabolism , Purines/metabolism , Solute Carrier Proteins/metabolism , Transcription Factors/metabolism , Adenine/metabolism , Biosynthetic Pathways , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , Chromatin/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Membrane Transport Proteins , Models, Biological , Solute Carrier Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription, Genetic
3.
Nat Genet ; 53(3): 269-278, 2021 03.
Article in English | MEDLINE | ID: mdl-33558760

ABSTRACT

Cancer-associated, loss-of-function mutations in genes encoding subunits of the BRG1/BRM-associated factor (BAF) chromatin-remodeling complexes1-8 often cause drastic chromatin accessibility changes, especially in important regulatory regions9-19. However, it remains unknown how these changes are established over time (for example, immediate consequences or long-term adaptations), and whether they are causative for intracomplex synthetic lethalities, abrogating the formation or activity of BAF complexes9,20-24. In the present study, we use the dTAG system to induce acute degradation of BAF subunits and show that chromatin alterations are established faster than the duration of one cell cycle. Using a pharmacological inhibitor and a chemical degrader of the BAF complex ATPase subunits25,26, we show that maintaining genome accessibility requires constant ATP-dependent remodeling. Completely abolishing BAF complex function by acute degradation of a synthetic lethal subunit in a paralog-deficient background results in an almost complete loss of chromatin accessibility at BAF-controlled sites, especially also at superenhancers, providing a mechanism for intracomplex synthetic lethalities.


Subject(s)
Chromatin/genetics , DNA Helicases/metabolism , Multiprotein Complexes/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Cell Line , Chromatin/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/cytology , Enhancer Elements, Genetic , Gene Knockout Techniques , Histones/genetics , Histones/metabolism , Humans , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Transcription Factors/genetics
4.
Cancer Res ; 80(7): 1498-1511, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32041837

ABSTRACT

Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adult , Aged , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Brain/blood supply , Brain/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Hypoxia/drug effects , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/blood supply , Glioblastoma/genetics , Glioblastoma/pathology , Human Umbilical Vein Endothelial Cells , Humans , Lignans/pharmacology , Lignans/therapeutic use , Male , Middle Aged , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Tumor Microenvironment/drug effects , Up-Regulation , Xenograft Model Antitumor Assays , Young Adult , Zinc Finger E-box-Binding Homeobox 1/antagonists & inhibitors
5.
Nat Genet ; 51(6): 990-998, 2019 06.
Article in English | MEDLINE | ID: mdl-31133746

ABSTRACT

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression; pharmacological inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin associated suggests a direct role for nuclear metabolism in the control of gene expression.


Subject(s)
Folic Acid/metabolism , Gene Expression Regulation , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Nucleus/metabolism , Chromatin/genetics , Gene Knockout Techniques , Humans , Loss of Function Mutation , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Protein Transport , Signal Transduction , Transcription, Genetic
6.
Lab Chip ; 18(2): 371-384, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29299576

ABSTRACT

The invasion of malignant cells into tissue is a critical step in the progression of cancer. While it is increasingly appreciated that cells within a tumor differ in their invasive potential, it remains nearly unknown how these differences relate to cell-to-cell variations in protein expression. Here, we introduce a microfluidic platform that integrates measurements of invasive motility and protein expression for single cells, which we use to scrutinize human glioblastoma tumor-initiating cells (TICs). Our live-cell imaging microdevice is comprised of polyacrylamide microchannels that exhibit tissue-like stiffness and present chemokine gradients along each channel. Due to intrinsic differences in motility, cell subpopulations separate along the channel axis. The separated cells are then lysed in situ and each single-cell lysate is subjected to western blotting in the surrounding polyacrylamide matrix. We observe correlations between motility and Nestin and EphA2 expression. We identify protein-protein correlations within single TICs, which would be obscured with population-based assays. The integration of motility traits with single-cell protein analysis - on the same cell - offers a new means to identify druggable targets of invasive capacity.


Subject(s)
Cell Movement/physiology , Microfluidic Analytical Techniques/instrumentation , Neoplasm Invasiveness/physiopathology , Neoplasm Proteins/analysis , Neoplastic Stem Cells , Single-Cell Analysis , Cell Line, Tumor , Equipment Design , Glioblastoma/metabolism , Glioblastoma/physiopathology , Humans , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/chemistry , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods
7.
Biophys J ; 111(9): 2039-2050, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27806284

ABSTRACT

The quantification of cellular mechanical properties is of tremendous interest in biology and medicine. Recent microfluidic technologies that infer cellular mechanical properties based on analysis of cellular deformations during microchannel traversal have dramatically improved throughput over traditional single-cell rheological tools, yet the extraction of material parameters from these measurements remains quite complex due to challenges such as confinement by channel walls and the domination of complex inertial forces. Here, we describe a simple microfluidic platform that uses hydrodynamic forces at low Reynolds number and low confinement to elongate single cells near the stagnation point of a planar extensional flow. In tandem, we present, to our knowledge, a novel analytical framework that enables determination of cellular viscoelastic properties (stiffness and fluidity) from these measurements. We validated our system and analysis by measuring the stiffness of cross-linked dextran microparticles, which yielded reasonable agreement with previously reported values and our micropipette aspiration measurements. We then measured viscoelastic properties of 3T3 fibroblasts and glioblastoma tumor initiating cells. Our system captures the expected changes in elastic modulus induced in 3T3 fibroblasts and tumor initiating cells in response to agents that soften (cytochalasin D) or stiffen (paraformaldehyde) the cytoskeleton. The simplicity of the device coupled with our analytical model allows straightforward measurement of the viscoelastic properties of cells and soft, spherical objects.


Subject(s)
Elasticity , Lab-On-A-Chip Devices , Animals , Biomechanical Phenomena , Cell Line, Tumor , Glioblastoma/pathology , Mice , NIH 3T3 Cells , Viscosity
8.
Annu Rev Chem Biomol Eng ; 6: 293-317, 2015.
Article in English | MEDLINE | ID: mdl-26134738

ABSTRACT

Microfluidic systems are attracting increasing interest for the high-throughput measurement of cellular biophysical properties and for the creation of engineered cellular microenvironments. Here we review recent applications of microfluidic technologies to the mechanics of living cells and synthetic cell-mimetic systems. We begin by discussing the use of microfluidic devices to dissect the mechanics of cellular mimics, such as capsules and vesicles. We then explore applications to circulating cells, including erythrocytes and other normal blood cells, and rare populations with potential disease diagnostic value, such as circulating tumor cells. We conclude by discussing how microfluidic devices have been used to investigate the mechanics, chemotaxis, and invasive migration of adherent cells. In these ways, microfluidic technologies represent an increasingly important toolbox for investigating cellular mechanics and motility at high throughput and in a format that lends itself to clinical translation.


Subject(s)
Microfluidic Analytical Techniques/methods , Animals , Artificial Cells/cytology , Biomechanical Phenomena , Cell Movement , Cytological Techniques/instrumentation , Cytological Techniques/methods , Equipment Design , Humans , Microfluidic Analytical Techniques/instrumentation
9.
Cancer Res ; 75(6): 1113-22, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25634210

ABSTRACT

Tumor-initiating cells (TIC) perpetuate tumor growth, enable therapeutic resistance, and drive initiation of successive tumors. Virtually nothing is known about the role of mechanotransductive signaling in controlling TIC tumorigenesis, despite the recognized importance of altered mechanics in tissue dysplasia and the common observation that extracellular matrix (ECM) stiffness strongly regulates cell behavior. To address this open question, we cultured primary human glioblastoma (GBM) TICs on laminin-functionalized ECMs spanning a range of stiffnesses. Surprisingly, we found that these cells were largely insensitive to ECM stiffness cues, evading the inhibition of spreading, migration, and proliferation typically imposed by compliant ECMs. We hypothesized that this insensitivity may result from insufficient generation of myosin-dependent contractile force. Indeed, we found that both pharmacologic and genetic activation of cell contractility through RhoA GTPase, Rho-associated kinase, or myosin light chain kinase restored stiffness-dependent spreading and motility, with TICs adopting the expected rounded and nonmotile phenotype on soft ECMs. Moreover, constitutive activation of RhoA restricted three-dimensional invasion in both spheroid implantation and Transwell paradigms. Orthotopic xenotransplantation studies revealed that control TICs formed tumors with classical GBM histopathology including diffuse infiltration and secondary foci, whereas TICs expressing a constitutively active mutant of RhoA produced circumscribed masses and yielded a 30% enhancement in mean survival time. This is the first direct evidence that manipulation of mechanotransductive signaling can alter the tumor-initiating capacity of GBM TICs, supporting further exploration of these signals as potential therapeutic targets and predictors of tumor-initiating capacity within heterogeneous tumor cell populations.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Myosins/physiology , Neoplastic Stem Cells/physiology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Extracellular Matrix/metabolism , Female , Humans , Mice , Neoplasm Invasiveness , rhoA GTP-Binding Protein/physiology
10.
Anal Chem ; 86(20): 10429-36, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25226230

ABSTRACT

Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors.


Subject(s)
Blotting, Western , Glioblastoma/diagnosis , Single-Cell Analysis , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Electrophoresis, Gel, Two-Dimensional , Glioblastoma/drug therapy , Humans
11.
Acta Biomater ; 9(5): 6393-402, 2013 May.
Article in English | MEDLINE | ID: mdl-23376132

ABSTRACT

Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity of native tissue present physical and biological barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (P≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach to targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues.


Subject(s)
Biocompatible Materials , Enzymes/administration & dosage , Knee Joint/pathology , Animals , Cattle , Enzymes/metabolism , Microscopy, Electron, Scanning
12.
Mol Ther ; 19(11): 1981-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21829177

ABSTRACT

For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK(30)PEG(10k)). We found that CK(30)PEG(10k)/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK(30)PEG(10k)/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase.


Subject(s)
Acetylcysteine/pharmacology , Cystic Fibrosis/metabolism , DNA/metabolism , Expectorants/pharmacology , Nanoparticles/chemistry , Sputum/drug effects , Transduction, Genetic/methods , Adult , Animals , Biopolymers/chemistry , Biopolymers/genetics , Biopolymers/metabolism , Cystic Fibrosis/therapy , DNA/chemistry , Diffusion/drug effects , Female , Genetic Therapy , Humans , Male , Mice , Mice, Inbred C57BL , Mucins/metabolism , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Polylysine/chemistry , Polylysine/metabolism , Respiratory System/drug effects , Respiratory System/metabolism , Viscosity/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL