Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1381765, 2024.
Article in English | MEDLINE | ID: mdl-38919616

ABSTRACT

Background: Sleep disorders (SD) are known to have a profound impact on human health and quality of life although their exact pathogenic mechanisms remain poorly understood. Methods: The study first accessed SD datasets from the GEO and identified DEGs. These DEGs were then subjected to gene set enrichment analysis. Several advanced techniques, including the RF, SVM-RFE, PPI networks, and LASSO methodologies, were utilized to identify hub genes closely associated with SD. Additionally, the ssGSEA approach was employed to analyze immune cell infiltration and functional gene set scores in SD. DEGs were also scrutinized in relation to miRNA, and the DGIdb database was used to explore potential pharmacological treatments for SD. Furthermore, in an SD murine model, the expression levels of these hub genes were confirmed through RT-qPCR and Western Blot analyses. Results: The findings of the study indicate that DEGs are significantly enriched in functions and pathways related to immune cell activity, stress response, and neural system regulation. The analysis of immunoinfiltration demonstrated a marked elevation in the levels of Activated CD4+ T cells and CD8+ T cells in the SD cohort, accompanied by a notable rise in Central memory CD4 T cells, Central memory CD8 T cells, and Natural killer T cells. Using machine learning algorithms, the study also identified hub genes closely associated with SD, including IPO9, RAP2A, DDX17, MBNL2, PIK3AP1, and ZNF385A. Based on these genes, an SD diagnostic model was constructed and its efficacy validated across multiple datasets. In the SD murine model, the mRNA and protein expressions of these 6 hub genes were found to be consistent with the results of the bioinformatics analysis. Conclusion: In conclusion, this study identified 6 genes closely linked to SD, which may play pivotal roles in neural system development, the immune microenvironment, and inflammatory responses. Additionally, the key gene-based SD diagnostic model constructed in this study, validated on multiple datasets showed a high degree of reliability and accuracy, predicting its wide potential for clinical applications. However, limited by the range of data sources and sample size, this may affect the generalizability of the results.


Subject(s)
Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Sleep Wake Disorders , Computational Biology/methods , Animals , Humans , Mice , Sleep Wake Disorders/genetics , Sleep Wake Disorders/immunology , Protein Interaction Maps/genetics , Disease Models, Animal , MicroRNAs/genetics , Databases, Genetic , Mice, Inbred C57BL , Transcriptome
2.
RSC Adv ; 14(10): 6548-6556, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38390510

ABSTRACT

Green and environmentally friendly natural bio-based food packaging films are increasingly favored by consumers. This study incorporated carboxylated-cellulose nanocrystal stabilized oregano essential oil (OEO) Pickering emulsion and ZnO nanoparticles (ZNPs) into konjac glucomannan (KGM)/carboxymethyl chitosan (CMCS) complexes to develop active food packaging films. The effects of OEO Pickering emulsion and ZNPs on the physical, structural, and antimicrobial activities of the nanocomposite films were evaluated. The OEO Pickering emulsion had a droplet size of 48.43 ± 3.56 µm and showed excellent dispersion and stability. Fourier transform infrared and X-ray diffraction analyses suggested that the interactions between the Pickering emulsion, ZNPs and KGM/CMCS matrix were mainly through hydrogen bonding. SEM observations confirmed that the Pickering emulsion and ZNPs were well incorporated into the KGM/CMCS matrix, forming tiny pores within the nanocomposite films. The incorporation of the OEO Pickering emulsion and/or ZNPs obviously increased the light and water vapor barrier ability, thermal stability, mechanical strength and antimicrobial properties of the KGM/CMCS nanocomposite film. Notably, KGM/CMCS/ZNPs/OEO Pickering emulsion films exhibited the highest barrier, and mechanical and antimicrobial activities due to the synergistic effect between the OEO Pickering emulsion and ZNPs. These results suggest that KGM/CMCS/ZNPs/OEO Pickering emulsion films can be utilized as novel active food packaging materials to extend the shelf life of packaged foods.

3.
Dev Comp Immunol ; 146: 104737, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37236330

ABSTRACT

Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.


Subject(s)
Lepidoptera , Serine Endopeptidases , Animals , Larva , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteases/genetics , Serine Proteases/metabolism , Enzyme Precursors/metabolism , Monophenol Monooxygenase , Insect Proteins/metabolism
4.
J Alzheimers Dis ; 90(2): 783-794, 2022.
Article in English | MEDLINE | ID: mdl-36189598

ABSTRACT

BACKGROUND: DNA methylation is expected to become a kind of new diagnosis and treatment method of Alzheimer's disease (AD). Neuroinflammation- and immune-related pathways represent one of the major genetic risk factors for AD. OBJECTIVE: We aimed to investigate DNA methylation levels of 7 key immunologic-related genes in peripheral blood and appraise their applicability in the diagnosis of AD. METHODS: Methylation levels were obtained from 222 participants (101 AD, 72 MCI, 49 non-cognitively impaired controls). Logistic regression models for diagnosing AD were established after least absolute shrinkage and selection operator (LASSO) and best subset selection (BSS), evaluated by respondent working curve and decision curve analysis for sensitivity. RESULTS: Six differentially methylated positions (DMPs) in the MCI group and 64 in the AD group were found, respectively. Among them, there were 2 DMPs in the MCI group and 30 DMPs in the AD group independent of age, gender, and APOE4 carriers (p <  0.05). AD diagnostic prediction models differentiated AD from normal controls both in a training dataset (LASSO: 8 markers, including methylation levels at ABCA7 1040077, CNR1 88166293, CX3CR1 39322324, LRRK2 40618505, LRRK2 40618493, NGFR 49496745, TARDBP 11070956, TARDBP 11070840 area under the curve [AUC] = 0.81; BSS: 2 markers, including methylation levels at ABCA7 1040077 and CX3CR1 39322324, AUC = 0.80) and a testing dataset (AUC = 0.84, AUC = 0.82, respectively). CONCLUSION: Our work indicated that methylation levels of 7 key immunologic-related genes (ABCA7, CNR1, CX3CR1, CSF1R, LRRK2, NGFR, and TARDBP) in peripheral blood was altered in AD and the models including methylation of immunologic-related genes biomarkers improved prediction of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Cognitive Dysfunction/diagnosis , Apolipoprotein E4/genetics , Biomarkers , DNA Methylation/genetics
5.
Beilstein J Nanotechnol ; 13: 882-895, 2022.
Article in English | MEDLINE | ID: mdl-36127897

ABSTRACT

LaFe x Ni1- x O3 perovskite oxides were prepared by the sol-gel method under various conditions, including different pH values (pH 0 and pH 7) and different calcination temperatures (500-800 °C) as well as different Fe/Ni ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFe x Ni1- x O3 perovskite oxides to decompose the methylene blue molecules. Accordingly, the synthesis condition of pH 0, calcination temperature at 700 °C, and Fe/Ni ratio = 7/3 could form LaFe0.7Ni0.3O3 perovskite oxides as highly efficient photocatalysts. Moreover, various conditions during the photocatalytic degradation were verified, such as pH value, catalyst dosage, and the additional amount of H2O2. LaFe0.7Ni0.3O3 perovskite oxides could operate efficiently under pH 3.5, catalyst dosage of 50 mg/150 mL, and H2O2 concentration of 133 ppm to decompose the MB dye in the 1st order kinetic rate constant of 0.0506 s-1.

6.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897876

ABSTRACT

The rhizomes of Polygonatum sibiricum are commonly consumed as food and also used as medicine. However, the metabolic profile of P. sibiricum has not been fully revealed yet. Recently, we developed a novel evergreen species of P. sibiricum. The objectives of this study were to compare the metabolic profiles of two types of P. sibiricum, i.e., the newly developed evergreen type (Gtype) and a wide-type (Wtype), by using UHPLC-Q-Orbitrap-MS-based untargeted metabolomics approach. A total of 263 and 258 compounds in the positive and negative modes of the mass spectra were tentatively identified. Distinctively different metabolomic profiles of these two types of P. sibiricum were also revealed by principal component analysis (PCA) and principal coordinates analysis (PCoA). Furthermore, by using partial least squares discriminant analysis (PLS-DA) modeling, it was found that, as compared with Wtype, Gtype samples had significantly higher content of oxyberberine, proliferin, alpinetin, and grandisin. On the other hand, 15 compounds, including herniarin, kaempferol 7-neohesperidoside, benzyl beta-primeveroside, vanillic acid, biochanin A, neoschaftoside, benzyl gentiobioside, cornuside, hydroxytyrosol-glucuronide, apigenin-pentosyl-glucoside, obacunone, 13-alpha-(21)-epoxyeurycomanone, vulgarin, digitonin, and 3-formylindole, were discovered to have higher abundance in Wtype samples. These distinguishing metabolites suggest the different beneficial health potentials and flavor attributes of the two types of P. sibiricum rhizomes.


Subject(s)
Polygonatum , Chromatography, High Pressure Liquid , Mass Spectrometry , Metabolomics , Polygonatum/chemistry , Rhizome/chemistry
7.
Nano Lett ; 21(1): 562-568, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33300342

ABSTRACT

Miniaturized flat and ultrathin optical components with spatial and polarization degrees of freedom are important for optical communications. Here, we use nanostructures that act as tiny phase plates on a dielectric metalens to generate a concentric polarization beam with different orientations along the radial direction. The important discoveries are that (1) the circularly polarized light can be converted into linearly polarized states with a different orientation at near field and that (2) this orientation is strongly correlated to the rotation of the nanostructures on the metalens. Stokes parameters are utilized to investigate the comprehensive polarization states embedded in the optical intensity along the propagation direction. The variation of the spatial polarization states transformed by the dielectric metalens can be properly mapped onto the Poincaré sphere. We believe that the variety of spatial polarizations within a miniaturized configuration provides a new degree of freedom for diverse applications in the future.

8.
Front Microbiol ; 11: 1492, 2020.
Article in English | MEDLINE | ID: mdl-32714311

ABSTRACT

Insect gut microbes play important roles in host feeding, digestion, immunity, growth and development. Spodoptera litura is an important agricultural pest distributed of global importance. In the present study, diversity and functions of the gut bacteria in S. litura are investigated based on the approaches of metagenomics and denaturing gradient gel electrophoresis (DGGE). The results showed that the gut bacterial diversity of S. litura reared on taro leaves or an artificial diet, were similar at the phylum level, as both were mainly composed of Proteobacteria, but differed significantly at the order level. Spodoptera litura reared on taro leaves (Sl-tar) had gut biota mainly comprised of Enterobacteriales and Lactobacillales, while those reared on artificial diet (Sl-art) predominantly contained Pseudomonadales and Enterobacteriales, suggesting that gut bacteria composition was closely related to the insect's diet. We found that feeding and growth of S. litura were significantly reduced when individuals were treated with antibiotics, but could be both restored to a certain extent after reimporting gut bacteria, indicating that gut bacteria are important for feeding, digestion, and utilization of food in S. litura. Metagenomic sequencing of gut microbes revealed that the gut bacteria encode a large number of enzymes involved in digestion, detoxification, and nutrient supply, implying that the gut microbes may be essential for improving the efficiency of food utilization in S. litura.

9.
Dev Comp Immunol ; 107: 103661, 2020 06.
Article in English | MEDLINE | ID: mdl-32097696

ABSTRACT

The diamondback moth, Plutella xylostella, is the first insect to develop resistance to Bacillus thuringiensis (Bt) in the field. To date, little is known about the molecular mechanism of the interaction between Bt and midgut immunity in P. xylostella. Here, we report immune responses in the P. xylostella midgut to Bt strain Bt8010 using a combined approach of transcriptomics and quantitative proteomics. Many genes in the Toll, IMD, JNK and JAK-STAT pathways and antimicrobial peptide genes were activated at 18 h post-infection. In the prophenoloxidase (PPO) cascade, four serpin genes were activated, and the PPO1 gene was suppressed by Bt8010. Inhibition of the two PPO proteins was observed at 18 h post-infection. Feeding Bt8010-infected larvae recombinant PPOs enhanced their survival. These results revealed that the Toll, IMD, JNK and JAK-STAT pathways were triggered and participated in the immune defence of the midgut against Bt8010, while the PPO cascade was inhibited and played an important role in this process.


Subject(s)
Bacillus thuringiensis/physiology , Digestive System/immunology , Gram-Positive Bacterial Infections/immunology , Insect Proteins/metabolism , Moths/immunology , Animals , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Cells, Cultured , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Gene Expression Regulation , Immunity, Innate , Insect Proteins/genetics , Larva , Serpins/genetics , Serpins/metabolism , Signal Transduction
10.
Biomolecules ; 9(10)2019 10 12.
Article in English | MEDLINE | ID: mdl-31614786

ABSTRACT

Plant microRNAs (miRNAs) have recently been reported to be involved in the cross-kingdom regulation of specific cellular and physiological processes in animals. However, little of this phenomenon is known for the communication between host plant and insect herbivore. In this study, the plant-derived miRNAs in the hemolymph of a cruciferous specialist Plutella xylostella were identified by small RNAs sequencing. A total of 39 miRNAs with typical characteristics of plant miRNAs were detected, of which 24 had read counts ≥ 2 in each library. Three plant-derived miRNAs with the highest read counts were validated, and all of them were predicted to target the hemocyanin domains-containing genes of P. xylostella. The luciferase assays in the Drosophila S2 cell demonstrated that miR159a and novel-7703-5p could target BJHSP1 and PPO2 respectively, possibly in an incomplete complementary pairing mode. We further found that treatment with agomir-7703-5p significantly influenced the pupal development and egg-hatching rate when reared on the artificial diet. The developments of both pupae and adults were severely affected upon their transfer to Arabidopsis thaliana, but this might be independent of the cross-kingdom regulation of the three plant-derived miRNAs on their target genes in P. xylostella, based on expression analysis. Taken together, our work reveals that the plant-derived miRNAs could break the barrier of the insect mid-gut to enter the circulatory system, and potentially regulate the development of P. xylostella. Our findings provide new insights into the co-evolution of insect herbivore and host plant, and novel direction for pest control using plant-derived miRNAs.


Subject(s)
Arabidopsis/genetics , MicroRNAs/metabolism , Moths , Pest Control, Biological , Animals , Arabidopsis/metabolism , Cell Line , Drosophila , MicroRNAs/genetics
11.
Opt Lett ; 43(6): 1215-1218, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543254

ABSTRACT

We report GeSn p-i-n resonant-cavity-enhanced photodetectors (RCEPDs) grown on silicon-on-insulator substrates. A vertical cavity, composed of a buried oxide as the bottom reflector and a deposited SiO2 layer on the top surface as the top reflector, is created for the GeSn p-i-n structure to enhance the light-matter interaction. The responsivity experiments demonstrate that the photodetection range is extended to 1820 nm, completely covering all the telecommunication bands, because of the introduction of 2.5% Sn in the photon-absorbing layer. In addition, the responsivity is significantly enhanced by the resonant cavity effects, and a responsivity of 0.376 A/W in the telecommunication C-band is achieved that is significantly higher than that of conventional GeSn-based PDs. These results demonstrate the feasibility of CMOS-compatible, high-responsivity GeSn-based PDs for shortwave infrared applications.

12.
Gene ; 647: 21-30, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29305978

ABSTRACT

Insect gut immunity plays a key role in defense against microorganism infection. The knowledge of insect gut immunity has been obtained mostly from Drosophila melanogaster. Little is known about gut immunity in the diamondback moth, Plutella xylostella (L.), a pest destroying cruciferous crops worldwide. In this study, expressions of the immune-related genes in the midgut of P. xylostella orally infected with Staphylococcus aureus, Escherichia coli and Pichia pastoris were profiled by RNA-seq and qRT-PCR approaches. The results revealed that the Toll, IMD, JNK and JAK-STAT pathways and possibly the prophenoloxidase activation system in P. xylostella could be activated by oral infections, and moricins, gloverins and lysozyme2 might act as important effectors against microorganisms. Subsequent knock-down of IMD showed that this gene was involved in regulating the expression of down-stream genes in the IMD pathway. Our work indicates that the Toll, IMD, JNK and JAK-STAT pathways may synergistically modulate immune responses in the P. xylostella midgut, implying a complex and diverse immune system in the midgut of insects.


Subject(s)
Digestive System/microbiology , Escherichia coli Infections/genetics , Lepidoptera/genetics , Lepidoptera/immunology , Mycoses/genetics , Staphylococcal Infections/genetics , Transcriptome/genetics , Animals , Escherichia coli/immunology , Escherichia coli Infections/immunology , Gene Expression Profiling/methods , Insect Proteins/genetics , Lepidoptera/microbiology , Moths/genetics , Moths/immunology , Moths/microbiology , Mycoses/immunology , Pichia/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology
13.
Front Microbiol ; 8: 663, 2017.
Article in English | MEDLINE | ID: mdl-28491055

ABSTRACT

Herbivore specialists adapt to feed on a specific group of host plants by evolving various mechanisms to respond to plant defenses. Insects also possess complex gut microbiotas but their potential role in adaptation is poorly understood. Our previous study of the genome of diamondback moth, Plutella xylostella, revealed an intrinsic capacity to detoxify plant defense compounds, which is an important factor in its success as a pest. Here we expand on that work with a complete taxonomic and functional profile of the P. xylostella gut microbiota obtained by metagenomic sequencing. Gene enrichment in the metagenome, accompanied by functional identification, revealed an important role of specific gut bacteria in the breakdown of plant cell walls, detoxification of plant phenolics, and synthesis of amino acids. Microbes participating in these pathways mainly belonged to three highly abundant bacteria: Enterobacter cloacae, Enterobacter asburiae, and Carnobacterium maltaromaticum. Results show that while the gut microbial community may be complex, a small number of functionally active species can be disproportionally important. The presence of specific enzymes in the microbiota community, such as supporting amino acid synthesis, digestion and detoxification functions, demonstrates the beneficial interactions between P. xylostella and its gut microbiota. These interactions can be potential targets for manipulation to provide novel pest management approaches.

14.
Sci Rep ; 5: 9877, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25943446

ABSTRACT

The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity.


Subject(s)
Genes, Insect/genetics , Genes, Insect/immunology , Genome-Wide Association Study/methods , Insect Proteins/genetics , Insect Proteins/immunology , Moths/physiology , Animals , Gene Expression Profiling , Immunity, Innate/genetics , Immunity, Innate/immunology
15.
Sheng Wu Gong Cheng Xue Bao ; 27(4): 584-91, 2011 Apr.
Article in Chinese | MEDLINE | ID: mdl-21847993

ABSTRACT

We have developed a rapid and high throughput lipase-ANS (8-Anilino-l-naphthalenesulfonic acid) assay to evaluate the thermo-stability of lipases based on the ANS fluorescence signal's increasing and shifting when this small fluorescence probes binds to lipase. The testing lipase samples were incubated at a temperature range of 25 degrees C to 65 degrees C for 30 min before mixed with ANS solution (0.20 mg/mL lipase and 0.05 mmol/L ANS in the buffer of 20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 7.2) in a cuvette or microplate. Fluorescence signals of the samples were measured at EX 378 nm, EM 465 nm with a fluorescence photometer or a plate reader, and Tm was calculated with the software of GraphPad Prism5.0. The Tm values of several mutants of Penicillium expansum lipase (PEL) were measured with this ANS assay and conventional method simultaneously and the results show that Tm values are comparative and consistent between these methods, suggesting that the lipase-ANS assay is a reliable, rapid and high throughput method for lipase thermo-stability measurement.


Subject(s)
Enzyme Stability , High-Throughput Screening Assays/methods , Lipase/metabolism , Anilino Naphthalenesulfonates/chemistry , Hot Temperature , Spectrometry, Fluorescence
16.
Sheng Wu Gong Cheng Xue Bao ; 23(4): 677-80, 2007 Jul.
Article in Chinese | MEDLINE | ID: mdl-17822043

ABSTRACT

In order to improve the thermostability of the Penicillium expansum Lipase (PEL), the lipase encoding genes was mutated by site-directed mutagenesis. A recombinant vector pAO815-ep8-K55R which contain double mutant genes was constructed by overlap extension PCR using the cDNA of a random-mutant lipase ep8 (a single site mutant) as the template and two special primers were used to generate another mutation site K55R. The recombinant vector was transformed into Pichia pastoris GS115 by electroporation and the recombinant mutant GS-pAO815-ep8- K55R can secret double-mutant lipase PEL-ep8-K55R-GS into the medium when it was induced by Methanol. The yield of the double-mutant lipase is 508 u/mL, which is 81% that of the wild type lipase PEL-GS (627 u/mL) and 55% that of random-mutant PEL-ep8-GS (924 u/mL). The specific activity of double-mutant lipase is 2309.1 u/mg, which is similar to random-mutant lipase PEL-ep8-GS and the wild type lipase PEL-GS. The optimum temperature of the double-mutant lipase is same with the wild type lipase PEL-GS and random-mutant lipase PEL-ep8-GS. While the Tm of the double-mutant lipase is 41.0 degrees C, 2.3 degrees C higher than the wild type lipase PEL-GS and 0.8% higher than the random-mutant lipase PEL-ep8-GS, indicating that the double-mutant lipase PEL-ep8-K55R-GS has higher thermostability.


Subject(s)
Lipase/genetics , Lipase/metabolism , Mutant Proteins/metabolism , Penicillium/enzymology , Electroporation , Enzyme Stability , Hot Temperature , Mutagenesis, Site-Directed , Pichia/genetics , Pichia/metabolism , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
17.
Biochim Biophys Acta ; 1752(1): 99-102, 2005 Aug 31.
Article in English | MEDLINE | ID: mdl-16112629

ABSTRACT

PF898 is a strain of Penicillium expansum optimized for the high level production of Penicillium expansum lipase (PEL). This PEL is unique compared with other lipases in several aspects, For example, the PEL shows low sequence identities (<30%) to all other known lipases, and high percentage of hydrophobic residues in the N-terminal region. The PEL was purified to homogeneity and shown to be 28 kDa by SDS-PAGE. Crystals suitable for X-ray diffraction analysis were obtained by the sitting-drop method of vapor diffusion with ammonia sulfate as the precipitating agent at 298 K. The crystals have tetragonal lattice and unit-cell parameters of a=b=88.09 A, c=126.54 A. Diffraction data were collected to a resolution of 2.08 A on an in-house rotating-anode generator.


Subject(s)
Lipase/chemistry , Lipase/isolation & purification , Penicillium/enzymology , Amino Acid Sequence , Conserved Sequence , Crystallography, X-Ray , Molecular Sequence Data , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...