Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Smart Med ; 2(1): e20220030, 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-37089706

ABSTRACT

Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.

2.
Crit Rev Biochem Mol Biol ; 57(4): 377-398, 2022 08.
Article in English | MEDLINE | ID: mdl-36048510

ABSTRACT

The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.


Subject(s)
Biological Phenomena , Receptors, Notch , Carrier Proteins/metabolism , Jagged-1 Protein/metabolism , Ligands , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/physiology
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166298, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34751152

ABSTRACT

In the diagnostic work-up of a newborn infant with a metabolic crisis, lethal multiorgan failure on day six of life, and increased excretion of 3-methylglutaconic acid, we found using whole genome sequencing a homozygous SERAC1 mutation indicating MEGDHEL syndrome (3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy, and Leigh-like syndrome). The SERAC1 protein is located at the contact site between mitochondria and the endoplasmic reticulum (ER) and is crucial for cholesterol trafficking. Our aim was to investigate the effect of the homozygous truncating mutation on mitochondrial structure and function. In the patient fibroblasts, no SERAC1 protein was detected, the mitochondrial network was severely fragmented, and the cristae morphology was altered. Filipin staining showed uneven localization of unesterified cholesterol. The calcium buffer function between cytoplasm and mitochondria was deficient. In liver mitochondria, complexes I, III, and IV were clearly decreased. In transfected COS-1 cells the mutant protein with the a 45-amino acid C-terminal truncation was distributed throughout the cell, whereas wild-type SERAC1 partially colocalized with the mitochondrial marker MT-CO1. The structural and functional mitochondrial abnormalities, caused by the loss of SERAC1, suggest that the crucial disease mechanism is disrupted interplay between the ER and mitochondria leading to decreased influx of calcium to mitochondria and secondary respiratory chain deficiency.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Metabolism, Inborn Errors/genetics , Mitochondria, Liver/genetics , Mitochondrial Diseases/genetics , Calcium/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Glutarates/metabolism , Humans , Infant, Newborn , Male , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Whole Genome Sequencing
5.
Biophys J ; 119(5): 913-923, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32755561

ABSTRACT

The segregation of lipids into lateral membrane domains has been extensively studied. It is well established that the structural differences between phospholipids play an important role in lateral membrane organization. When a high enough cholesterol concentration is present in the bilayer, liquid-ordered (Lo) domains, which are enriched in cholesterol and saturated phospholipids such as sphingomyelin (SM), may form. We have recently shown that such a formation of domains can be facilitated by the affinity differences of cholesterol for the saturated and unsaturated phospholipids present in the bilayer. In mammalian membranes, the saturated phospholipids are usually SMs with different acyl chains, the abundance of which vary with cell type. In this study, we investigated how the acyl chain structure of SMs affects the formation of SM- and cholesterol-enriched domains. From the analysis of trans-parinaric acid fluorescence emission lifetimes, we could determine that cholesterol facilitated lateral segregation most with the SMs that had 16 carbon-long acyl chains. Using differential scanning calorimetry and Förster resonance energy transfer techniques, we observed that the SM- and cholesterol-enriched domains with 16 carbon-long SMs were most thermally stabilized by cholesterol. The Förster resonance energy transfer technique also suggested that the same SMs also form the largest Lo domains. In agreement with our previously published data, the extent of influence that cholesterol had on the propensity of lateral segregation and the properties of Lo domains correlated with the relative affinity of cholesterol for the phospholipids present in the bilayers. Therefore, the specific SM species present in the membranes, together with unsaturated phospholipids and cholesterol, can be used by the cell to fine-tune the lateral structure of the membranes.


Subject(s)
Lipid Bilayers , Sphingomyelins , Calorimetry, Differential Scanning , Cholesterol , Phospholipids
6.
Biophys J ; 117(9): 1577-1588, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31610877

ABSTRACT

Lateral segregation and the formation of lateral domains are well-known phenomena in ternary lipid bilayers composed of an unsaturated (low gel-to-liquid phase transition temperature (Tm)) phospholipid, a saturated (high-Tm) phospholipid, and cholesterol. The formation of lateral domains has been shown to be influenced by differences in phospholipid acyl chain unsaturation and length. Recently, we also showed that differential interactions of cholesterol with low- and high-Tm phospholipids in the bilayer can facilitate phospholipid segregation. Now, we have investigated phospholipid-cholesterol interactions and their role in lateral segregation in ternary bilayers composed of different unsaturated phosphatidylcholines (PCs) with varying acyl chain lengths, N-palmitoyl-D-erythro-sphingomyelin (PSM), and cholesterol. Using deuterium NMR spectroscopy, we determined how PSM was influenced by the acyl chain composition in surrounding PC environments and correlated this with the affinity of cholestatrienol (a fluorescent cholesterol analog) for PSM in the different PC environments. Results from a combination of time-resolved fluorescence measurements of trans-parinaric acid and Förster resonance energy transfer experiments showed that the relative affinity of cholesterol for phospholipids determined the degree to which the sterol promoted domain formation. From Förster resonance energy transfer, deuterium NMR, and differential scanning calorimetry results, it was clear that cholesterol also influenced both the thermostability of the domains and the degree of order in and outside the PSM-rich domains. The results of this study have shown that the affinity of cholesterol for both low-Tm and high-Tm phospholipids and the effects of low- and high-Tm phospholipids on each other influence both lateral structure and domain properties in complex bilayers. We envision that similar effects also contribute to lateral heterogeneity in even more complex biological membranes.


Subject(s)
Cholesterol/chemistry , Sphingomyelins/chemistry , Deuterium/chemistry , Fluorescence Resonance Energy Transfer , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Solubility , Temperature , Unilamellar Liposomes
7.
Biophys J ; 116(6): 1105-1114, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30795873

ABSTRACT

The mode of interactions between palmitoyl lysophosphatidylcholine (palmitoyl lyso-PC) or other lysophospholipids (lyso-PLs) and palmitoyl ceramide (PCer) or other ceramide analogs in dioleoylphosphatidylcholine (DOPC) bilayers has been examined. PCer is known to segregate laterally into a ceramide-rich phase at concentrations that depend on the nature of the ceramides and the co-phospholipids. In DOPC bilayers, PCer forms a ceramide-rich phase at concentrations above 10 mol%. In the presence of 20 mol% palmitoyl lyso-PC in the DOPC bilayer, the lateral segregation of PCer was markedly facilitated (segregation at lower PCer concentrations). The thermostability of the PCer-rich phase in the presence of palmitoyl lyso-PC was also increased compared to that in the absence of palmitoyl lyso-PC. Other saturated lyso-PLs (e.g., palmitoyl lyso-phosphatidylethanolamine and lyso-sphingomyelin) also facilitated the lateral segregation of PCer in a similar manner as palmitoyl lyso-PC. When examined in the DOPC bilayer, it appeared that the association between palmitoyl lyso-PC and PCer was equimolar in nature. It is proposed that the interaction of PCer with lyso-PLs was driven by the need of ceramide to obtain a large-headgroup co-lipid, and saturated lyso-PLs were preferred co-lipids over DOPC because of the nature of their acyl chain. Structural analogs of PCer (1- or 3-deoxy-PCer) were also associated with palmitoyl lyso-PC, similarly to PCer, suggesting that the ceramide/lyso-PL interaction was not sensitive to structural alterations in the ceramide molecule. Binary complexes containing palmitoyl lyso-PC and ceramide were prepared, and these had a bilayer structure as ascertained by transmission electron microscopy. It is concluded that ceramides and lyso-PLs associated with each other both in binary bilayers and in ternary systems based on the DOPC bilayers. This association may have biological relevance under conditions in which both sphingomyelinases and phospholipase A2 enzymes are activated, such as during inflammatory processes.


Subject(s)
Ceramides/chemistry , Lipid Bilayers/chemistry , Lysophospholipids/chemistry , Phosphatidylcholines/chemistry
8.
Hum Mol Genet ; 26(8): 1432-1443, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28158749

ABSTRACT

De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.


Subject(s)
Adenosine Triphosphatases/genetics , Cerebral Palsy/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Spastic Paraplegia, Hereditary/genetics , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/biosynthesis , Adolescent , Adult , Axons/metabolism , Axons/pathology , Cerebral Palsy/pathology , Child, Preschool , Female , Gene Expression Regulation , Humans , Male , Membrane Proteins/biosynthesis , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Proteins/biosynthesis , Mutation , Spastic Paraplegia, Hereditary/pathology , TOR Serine-Threonine Kinases/genetics
9.
PLoS One ; 8(10): e75452, 2013.
Article in English | MEDLINE | ID: mdl-24130712

ABSTRACT

Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Phosphates/deficiency , Plant Roots/growth & development , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phosphates/metabolism , Plant Roots/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...