Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118673, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37506447

ABSTRACT

Due to excessive nutrient enrichment and rapidly increasing water demand, the occurrence of riverine environment deterioration events such as algal blooms in rivers of China has become more frequent and severe since the 1990s, which has imposed harmful consequences on riverine ecosystems. However, tackling river algal blooms as an important issue of restoring riverine environment is very challenging because the complex interaction mechanisms between the causes are impacted by multiple factors. The contributions of our study consist of: (1) optimizing joint operation of water projects for boosting synergies of water quality and quantity, and hydroelectricity; and (2) preventing algal bloom from perspectives of hydrological and water-quality conditions by regulating water releases of water projects. This study proposed a multi-objective optimization methodology grounded on the Non-dominated Sorting Genetic Algorithm to simultaneously minimize the excess values of algal bloom indicators (water quality, O1), minimize the used reservoir capacity for water supply (water quantity, O2), and maximize the hydropower generation (hydroelectricity, O3). The proposed methodology was applied to several catastrophic algal bloom events that took place between 2017 and 2021 and thirteen water projects in the Hanjiang River of China. The results indicated that the proposed methodology largely stimulated the synergistic benefits of the three objectives by reaching a 36.7% reduction in total nitrogen and phosphorus concentrations, a 33.1% improvement in the remaining reservoir capacity, and a 41.0% improvement in hydropower output, as compared with those of the standard operation policy (SOP). In addition, the optimal water release schemes of water projects would increase the minimum streamflow velocity of downstream algal bloom control stations by 8.6%-9.4%. This study provides a new perspective on water project operation in the environmental improvement in big river systems while boosting multi-objectives synergies to support environmentalists and decision-makers with scientific guidance on sustainable water resources management.


Subject(s)
Environmental Monitoring , Water Quality , Ecosystem , Quality Improvement , Rivers , Eutrophication , China , Phosphorus/analysis , Nitrogen/analysis
2.
J Environ Manage ; 342: 118232, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37270980

ABSTRACT

Artificial neural networks exhibit significant advantages in terms of learning capability and generalizability, and have been increasingly applied in water quality prediction. Through learning a compressed representation of the input data, the Encoder-Decoder (ED) structure not only could remove noise and redundancies, but also could efficiently capture the complex nonlinear relationships of meteorological and water quality factors. The novelty of this study lies in proposing a multi-output Temporal Convolutional Network based ED model (TCN-ED) to make ammonia nitrogen forecasts for the first time. The contribution of our study is indebted to systematically assessing the significance of combining the ED structure with advanced neural networks for making accurate and reliable water quality forecasts. The water quality gauge station located at Haihong village of an island in Shanghai City of China constituted the case study. The model input contained one hourly water quality factor and hourly meteorological factors of 32 observed stations, where each factor was traced back to the previous 24 h and each meteorological factor of 32 gauge stations was aggregated into one areal average factor. A total of 13,128 hourly water quality and meteorological data were divided into two datasets corresponding to model training and testing stages. The Long Short-Term Memory based ED (LSTM-ED), LSTM and TCN models were constructed for comparison purposes. The results demonstrated that the developed TCN-ED model can succeed in mimicking the complex dependence between ammonia nitrogen and water quality and meteorological factors, and provide more accurate ammonia nitrogen forecasts (1- up to 6-h-ahead) than the LSTM-ED, LSTM and TCN models. The TCN-ED model, in general, achieved higher accuracy, stability and reliability compared with the other models. Consequently, the improvement can facilitate river water quality forecasting and early warning, as well as benefit water pollution prevention in the interest of river environmental restoration and sustainability.


Subject(s)
Ammonia , Environmental Monitoring , Environmental Monitoring/methods , China , Reproducibility of Results , Models, Theoretical , Nitrogen/analysis , Forecasting
3.
Sci Total Environ ; 891: 164494, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37245810

ABSTRACT

Due to a small proportion of observations, reliable and accurate flood forecasts for large floods present a fundamental challenge to artificial neural network models, especially when the forecast horizons exceed the flood concentration time of a river basin. This study proposed for the first time a Similarity search-based data-driven framework, and takes the advanced Temporal Convolutional Network based Encoder-Decoder model (S-TCNED) as an example for multi-step-ahead flood forecasting. A total of 5232 hourly hydrological data were divided into two datasets for model training and testing. The input sequence of the model included hourly flood flows of a hydrological station and rainfall data (traced back to the previous 32 h) of 15 gauge stations, and the output sequence stepped into 1- up to 16-hour-ahead flood forecasts. A conventional TCNED model was also built for comparison purposes. The results demonstrated that both TCNED and S-TCNED could make suitable multi-step-ahead flood forecasts, while the proposed S-TCNED model not only could effectively mimic the long-term rainfall-runoff relationship but also could provide more reliable and accurate forecasts of large floods than the TCNED model even in extreme weather conditions. There is a significant positive correlation between the mean sample label density improvement and the mean Nash-Sutcliffe Efficiency (NSE) improvement of the S-TCNED over the TCNED at the long forecast horizons (13 h up to 16 h). Based on the analysis of the sample label density, it is found that the similarity search largely improves the model performance by enabling the S-TCNED model to learn the development process of similar historical floods in a targeted manner. We conclude that the proposed S-TCNED model that converts and associates the previous rainfall-runoff sequence with the forecasting runoff sequence under a similar scenario can enhance the reliability and accuracy of flood forecasts while extending the length of forecast horizons.

SELECTION OF CITATIONS
SEARCH DETAIL
...