Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 642: 182-192, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37004253

ABSTRACT

Nowadays, it is a global problem to recycle LiCoO2 from waste lithium-ion batteries (LIBs) due to the deficiency of high business cost and environmental pollution. Here, a novel three-channel ion recovery device based on a Zn-air desalination battery (ZADB) is proposed which can supply energy while separating Li+ and Co2+ from the recovered solution. The three-channel ZADB device consists of a Zn foil anode chamber with ZnSO4 anolyte stream, an intermediate chamber with Li+ and Co2+ recovered stream and an air cathode chamber with LiOH and Co(OH)2 catholyte stream, chambers are separated by anion exchange membrane (AEM) and cation exchange membrane (CEM) respectively. It can be described by the finite element simulation (FES) of physics field that, the Li+ and Co2+ in the recovered solution move to the cathode chamber, where the OH- are produced by absorbing O2 from the air combined with electronic in the discharge process. At the same time, the SO42- moves to the other end of the Zn foil anode chamber according to the law of charge conservation, which combined with the Zn2+ removed from the Zn foil. The results show that the recovery efficiency of the ZADB device is closely related to the discharge current density and the concentration of the recovered stream. The best recovery effect has achieved when 0.2 mol L-1 recovered solution is run for 24 h at the discharge current density of 0.2 mA cm-2. The average recovery rate is 0.275 mg min-1 with the highest recovery rate is 40.73 mg h-1, and the output energy density is 102.5 Wh Kg-1 during the experiment process. In addition, the ZADB device has the excellent long-term cycling performance and recycling stability. By comparing this device with other ion recovery methods, which provides that it is a splendid way to recycle Li+ and Co2+ from waste LIBs.

2.
J Colloid Interface Sci ; 608(Pt 1): 120-130, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34624761

ABSTRACT

Traditional carbon materials as sulfur hosts of Li-sulfur(Li-S) cathodes have slightly physical constraint for polysulfides, due to their no-polar property. Therefore, it is necessary to further enhance the affinity between sulfur hosts and polysulfides, and relieve the shuttle effects in the Li- S batteries. Herein, we report a novel vertical 2-dimensional (2D) p-SnS/n-SnS2 heterostructure sheets which grown on the surface of rGO. The excellent electrochemical properties of SnS-SnS2@rGO as Li-S cathode are ascribed to the stronger absorption effect of metal sulphides for polysulfides and the smooth trapping-diffusion-conversion effect of p-SnS/n-SnS2 heterostructure for polysulfides. As a conductive carrier for the growth of vertical 2D p-SnS/n-SnS2 heterostructure nanosheets, rGO can protect the steadiness and enhance the cycle stability of electrode, compared with heterostructure without rGO. In addition, the built-in electric field in the 2D p-SnS/n-SnS2 heterostructure during the discharge/charge processes can effectively accelerate charge transfer, and the charge transfer mechanism in SnS-SnS2 heterostructure during cycling has been investigated. At a rate capability of 2C, the designed SnS-SnS2@rGO as Li-S cathode delivers high specific capacities of 907 mAh g-1 and 571 mAh g-1 after the first cycle and 500 cycles, respectively, which shown excellent cycling ability.

SELECTION OF CITATIONS
SEARCH DETAIL
...