Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542143

ABSTRACT

The emergence of targeted therapeutics in ovarian cancer, particularly poly (ADP-ribose) polymerase inhibitors (PARPi's), has created additional opportunities for patients seeking frontline and recurrent disease management options. In particular, PARPi's have shown clinical benefits in BRCA mutant and/or homologous recombination deficient (HRD) ovarian cancer. Until recently, response was thought to be limited in BRCA wild-type, homologous recombination proficient (HRP) cancers. Therefore, attempts have been made at combination therapy involving PARPi to improve patient outcomes. Additionally, immune checkpoint inhibitors (ICIs) have demonstrated underwhelming results involving ovarian cancer. Many are searching for reliable biomarkers of immune response to increase efficacy of ICI therapy involving ovarian cancer. In this review, we examine the evidence supporting the combination of PARPi and ICIs in ovarian cancer, which is still lacking.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Homologous Recombination , Biomarkers
2.
Curr Probl Cancer ; 47(1): 100917, 2023 02.
Article in English | MEDLINE | ID: mdl-36508886

ABSTRACT

Folate is a B vitamin necessary for basic biological functions, including rapid cell turnover occurring in cancer cell proliferation. Though the role of folate as a causative versus protective agent in carcinogenesis is debated, several studies have indicated that the folate receptor (FR), notably subtype folate receptor alpha (FRα), could be a viable biomarker for diagnosis, progression, and prognosis. Several cancers, including gastrointestinal, gynecological, breast, lung, and squamous cell head and neck cancers overexpress FR and are currently under investigation to correlate receptor status to disease state. Traditional chemotherapies have included antifolate medications, such as methotrexate and pemetrexed, which generate anticancer activity during the synthesis phase of the cell cycle. Increasingly, the repertoire of pharmacotherapies is expanding to include FR as a target, with a heterogenous pool of directed therapies. Here we discuss the FR, expression and effect in cancer biology, and relevant pharmacologic inhibitors.


Subject(s)
Carcinoma, Squamous Cell , Folic Acid Antagonists , Humans , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Prognosis , Carcinoma, Squamous Cell/drug therapy , Folic Acid/therapeutic use , Folic Acid/metabolism , Biomarkers
3.
Oncol Rev ; 16: 10568, 2022.
Article in English | MEDLINE | ID: mdl-36531159

ABSTRACT

Immune disorders and cancer share a common pathway involving NF-κb signaling. Through involvement with GM-CSF, NF-κB can contribute to proliferation and activation of T- and B- cells as well as immune cell migration to sites of inflammation. In breast cancer, this signaling pathway has been linked to resistance with endocrine and chemotherapies. Similarly, in ovarian cancer, NF-κB influences angiogenesis and inflammation pathways. Further, BRCA1 signaling common to both breast and ovarian cancer also has the capability to induce NF-κB activity. Immunotherapy involving NF-κB can also be implemented to combat chemoresistance. The complex signaling pathways of NF-κB can be harnessed for developing cancer therapeutics to promote immunotherapy for improving patient outcomes.

4.
Oncol Rev ; 15(1): 534, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-34267890

ABSTRACT

Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.

SELECTION OF CITATIONS
SEARCH DETAIL
...