Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 96(1): e0166521, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34643435

ABSTRACT

Zinc-finger protein 36, CCCH type-like 1 (ZFP36L1), containing tandem CCCH-type zinc-finger motifs with an RNA-binding property, plays an important role in cellular RNA metabolism mainly by RNA decay pathways. Recently, we demonstrated that human ZFP36L1 has potent antiviral activity against influenza A virus infection. However, its role in the host defense response against flaviviruses has not been addressed. Here, we demonstrate that ZFP36L1 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L1 reduced JEV and DENV infection, and ZFP36L1 knockdown enhanced viral replication. ZFP36L1 destabilized the JEV genome by targeting and degrading viral RNA mediated by both 5'-3' XRN1 and 3'-5' RNA-exosome RNA decay pathways. Mutation in both zinc-finger motifs of ZFP36L1 disrupted RNA-binding and antiviral activity. Furthermore, the viral RNA sequences specifically recognized by ZFP36L1 were mapped to the 3'-untranslated region of the JEV genome with the AU-rich element (AUUUA) motif. We extend the function of ZFP36L1 to host antiviral defense by directly binding and destabilizing the viral genome via recruiting cellular mRNA decay machineries. IMPORTANCE Cellular RNA-binding proteins are among the first lines of defense against various viruses, particularly RNA viruses. ZFP36L1 belongs to the CCCH-type zinc-finger protein family and has RNA-binding activity; it has been reported to bind directly to the AU-rich elements (AREs) of a subset of cellular mRNAs and then lead to mRNA decay by recruiting mRNA-degrading enzymes. However, the antiviral potential of ZFP36L1 against flaviviruses has not yet been fully demonstrated. Here, we reveal the antiviral potential of human ZFP36L1 against Japanese encephalitis virus (JEV) and dengue virus (DENV). ZFP36L1 specifically targeted the ARE motif within viral RNA and triggered the degradation of viral RNA transcripts via cellular degrading enzymes 5'-3' XRN1 and 3'-5' RNA exosome. These findings provide mechanistic insights into how human ZFP36L1 serves as a host antiviral factor to restrict flavivirus replication.


Subject(s)
Butyrate Response Factor 1/metabolism , Exoribonucleases/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Flavivirus Infections/metabolism , Flavivirus Infections/virology , Flavivirus/physiology , Microtubule-Associated Proteins/metabolism , RNA Stability , Virus Replication , 3' Untranslated Regions , Amino Acid Motifs , Butyrate Response Factor 1/chemistry , Dengue Virus/physiology , Encephalitis Virus, Japanese/physiology , Host-Pathogen Interactions , Humans , Protein Binding , Protein Interaction Domains and Motifs , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins
2.
Nucleic Acids Res ; 48(13): 7371-7384, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32556261

ABSTRACT

ZFP36L1, a CCCH-type zinc finger protein, is an RNA-binding protein that participates in controlling cellular mRNA abundance and turnover by posttranscriptional regulation. Here, we demonstrated that ZFP36L1 has an important role in host defense against influenza A virus (IAV) infection. Overexpression of ZFP36L1 reduced IAV replication via translational repression of HA, M and NS RNA segment transcripts. IAV infection upregulated cellular ZFP36L1 expression, and endogenous ZFP36L1 knockdown significantly enhanced IAV replication. ZFP36L1 directly binds to IAV NS1 mRNA in the cytoplasm and blocks the expression and function of NS1 protein. Mutation of CCCH-type zinc finger domains of ZFP36L1 lost its antiviral potential and NS1 mRNA binding. Thus, ZFP36L1 can act as a host innate defense by targeting HA, M and NS mRNA transcripts to suppress viral protein translation.


Subject(s)
Butyrate Response Factor 1/metabolism , Viral Matrix Proteins/genetics , Viral Nonstructural Proteins/genetics , A549 Cells , Animals , Binding Sites , Butyrate Response Factor 1/chemistry , Butyrate Response Factor 1/genetics , Dogs , HEK293 Cells , Humans , Influenza A virus/metabolism , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Matrix Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...