Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
BMC Infect Dis ; 23(1): 874, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093214

ABSTRACT

BACKGROUND: The sensitivity of HIV screening assays often leads to a high rate of false-positive results, requiring retests and confirmatory tests. This study aimed to analyze the capability of signal-to-cutoff (S/CO) ratios of HIV screening assay to predict HIV infection. METHODS: A retrospective study on the HIV screening-positive population was performed at Zhongshan Hospital, Xiamen University, the correlation between HIV screening assay S/CO ratios and HIV infection was assessed, and plotted Receiver Operating Characteristic (ROC) curves were generated to establish the optimal cutoff value for predicting HIV infection. RESULTS: Out of 396,679 patients, 836 were confirmed to be HIV-infected, with an HIV prevalence of 0.21%. The median S/CO ratios in HIV infection were significantly higher than that in non-HIV infection (296.9 vs. 2.41, P < 0.001). The rate of confirmed HIV infection was increased with higher S/CO ratios in the screening assay. The ROC curve based on the HIV screening assay S/CO ratio achieved a sensitivity of 93.78% and a specificity of 93.12% with an optimal cutoff value of 14.09. The area under the ROC curve was 0.9612. Further analysis of the ROC curve indicated that the S/CO ratio thresholds yielding positive predictive values of 99%, 99.5%, and 100% for HIV infection were 26.25, 285.7, and 354.5, respectively. CONCLUSION: Using HIV screening assay S/CO ratio to predict HIV infection can largely reduce necessitating retests and confirmatory tests. Incorporating the S/CO ratio into HIV testing algorithms can have significant implications for medical and public health practices.


Subject(s)
HIV Infections , Humans , HIV Infections/diagnosis , HIV Infections/epidemiology , Sensitivity and Specificity , Retrospective Studies , ROC Curve , HIV Testing , Mass Screening/methods
2.
ACS Infect Dis ; 9(12): 2548-2559, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37983134

ABSTRACT

M2 macrophages were related to local immune homeostasis and maternal-fetal tolerance in normal pregnancy; whether M2 macrophages can respond to the stimulation of Treponema pallidum to mediate placental vascular inflammation injury is unclear. In this study, M2 macrophages were constructed to investigate the impact of T. pallidum on macrophage polarization and the underlying signaling pathway involved in this process, and the influence of macrophage polarization triggered by T. pallidum on the apoptosis and angiogenesis of human umbilical vein endothelial cells (HUVEC) was also explored. The results showed that M2 macrophage markers (CD206 and PPARγ) and anti-inflammatory factors (TGFß and CCL18) were decreased, while M1 macrophage marker CD80 and inflammatory cytokines (IL1ß and TNFα) were increased when M2 macrophages were treated with T. pallidum, indicating that T. pallidum promoted the polarization of M2 subtype macrophages to the M1 subtype. Moreover, T. pallidum-induced M1 macrophage polarization was found to be significantly correlated with the activation of Janus kinase 1 (JAK1) and signal transducer and activator of transcription 1 (STAT1). In addition, T. pallidum-induced M1 macrophages were found to promote apoptosis and inhibit the angiogenesis of HUVECs, and JAK1 or STAT1 inhibitors could weaken the apoptosis rate and promote the angiogenesis of HUVECs. These findings revealed that T. pallidum promoted the polarization of M2 macrophages to the M1 subtype through the JAK1-STAT1 signal pathway mediating the apoptosis and inhibiting angiogenesis of HUVECs, which may provide a possible mechanism for T. pallidum-induced adverse pregnancy outcomes.


Subject(s)
Angiogenesis , Treponema pallidum , Humans , Female , Pregnancy , Human Umbilical Vein Endothelial Cells , Placenta , Macrophages/metabolism , Apoptosis
3.
NPJ Vaccines ; 8(1): 146, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773233

ABSTRACT

Syphilis has resurged in many countries, which has called attention to vaccine development. Based on the immunization-based rabbit model of infection with the Nichols strain, this study explored the protective immune response of a controversial syphilis vaccine candidate, TprK, and found that immunization with full-length rTprK was effective in attenuating lesion development and accelerating lesion resolution, which could reduce the probability of the pathogen spreading to distant tissue sites to prevent the progression of the disease to some extent. Furthermore, the results revealed that immunization with rTprK not only rapidly induced a strong Th1-like cellular response but also elicited a humoral immune response to produce opsonic antibodies to enhance macrophage-mediated opsonophagocytosis. Although complete protection against infection was not achieved, the study provided a comprehensive and in-depth exploration of the immunogenicity of TprK and highlighted the importance of TprK as a promising syphilis vaccine component.

4.
J Cell Mol Med ; 27(20): 3065-3074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487001

ABSTRACT

The migratory ability of microglia facilitates their rapid transport to a site of injury to kill and remove pathogens. However, the effect of Treponema pallidum membrane proteins on microglia migration remains unclear. The effect of Tp47 on the migration ability and autophagy and related mechanisms were investigated using the human microglial clone 3 cell line. Tp47 inhibited microglia migration, the expression of autophagy-associated protein P62 decreased, the expression of Beclin-1 and LC3-II/LC3-I increased, and the autophagic flux increased in this process. Furthermore, autophagy was significantly inhibited, and microglial cell migration was significantly increased after neutralisation with an anti-Tp47 antibody. In addition, Tp47 significantly inhibited the expression of p-PI3K, p-AKT, and p-mTOR proteins, and the sequential activation of steps in the PI3K/AKT/mTOR pathways effectively prevented Tp47-induced autophagy. Moreover, Tp47 significantly inhibited the expression of p-FOXO1 protein and promoted FOXO1 nuclear translocation. Inhibition of FOXO1 effectively suppressed Tp47-induced activation of autophagy and inhibition of migration. Treponema pallidum membrane protein Tp47-induced autophagy and inhibited cell migration in HMC3 Cells via the PI3K/AKT/FOXO1 pathway. These data will contribute to understanding the mechanism by which T. pallidum escapes immune killing and clearance after invasion into the central nervous system.

5.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119540, 2023 10.
Article in English | MEDLINE | ID: mdl-37468070

ABSTRACT

Interleukin-6 (IL-6) is a multi-effective cytokine involved in multiple immune responses. Whether fibroblasts also turn out to be a cytokine IL-6 factory during interaction with Treponema pallidum is not yet understood. To explore whether fibroblasts participate in inflammation due to syphilis, a series of experiments were performed to explore the role of T. pallidum lipoprotein Tp47 in IL-6 production in human dermal fibroblasts. The Toll-like receptor 2 (TLR2) and participating signalling pathways in this process were also evaluated. The results showed that the expressions of IL-6 and the protein levels of TLR2 in fibroblasts were upregulated after stimulation with Tp47, and this effect was impeded by the TLR2 inhibitor C29. In addition, Tp47 promoted the phosphorylation of p38, PI3K/Akt, and nuclear factor-kappaB (NF-κB), and the translocation of NF-κB in fibroblasts. Moreover, p38, PI3K, and NF-κB inhibitors significantly reduced IL-6 production in fibroblasts stimulated with Tp47. Furthermore, the TLR2 inhibitor C29 inhibited the phosphorylation of p38, Akt, and NF-κB, and the translocation of NF-κB in fibroblasts. In conclusion, our results showed that Tp47 enhanced IL-6 secretion in human dermal fibroblasts through TLR2 via p38, PI3K/Akt, and NF-κB signalling pathways. These findings contribute to our understanding of syphilis inflammation.


Subject(s)
NF-kappa B , Syphilis , Humans , NF-kappa B/metabolism , Interleukin-6/metabolism , Treponema pallidum/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Syphilis/metabolism , Cytokines/metabolism , Inflammation , Recombinant Proteins/metabolism , Fibroblasts/metabolism
6.
Microbiol Spectr ; 11(4): e0106723, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37347187

ABSTRACT

Heterogeneous tprK sequences have been hypothesized to be an important factor for persistent infection of Treponema pallidum subsp. pallidum (T. pallidum) in humans. Previous research has only explored tprK diversity using a rabbit model infected with almost clonal isolates, which is inconsistent with the fact that infected human isolates contain multiple heterogeneous tprK sequences. Here, we used the T. pallidum Amoy strain with heterogeneous tprK sequences to establish a rabbit infection model and explore longitudinal variations in the tprK gene under normal infection, immunosuppression treatment, and benzathine penicillin G (BPG) treatment using next-generation sequencing. The diversity of the tprK gene was high in all three groups but was highest in the control group and lowest in the BPG group. Interestingly, the overall diversity of tprK in all three groups decreased during infection, exhibiting a "more to less" trend, indicating that survival selection may be an important factor affecting tprK variation in the later infection stage. BPG treatment appeared to reduce the diversity of tprK but increased the frequency of predominant sequence changes, which might facilitate the escape of T. pallidum from the host immune clearance. Furthermore, the original predominant V region sequence did not disappear with disease progression but retained a relatively high proportion within the population, suggesting a new direction for tprK-related vaccine research. This study provides insights into longitudinal variations within the highly heterogeneous tprK gene sequences of T. pallidum and will contribute to further exploration of the pathogenesis of syphilis. IMPORTANCE The tprK variations are an important factor in persistent T. pallidum infection. A nearly clonal isolate has been used previously to investigate the mechanism of tprK gene variations; however, clinical T. pallidum isolates in infected humans exhibit multiple heterogeneous tprK sequences. Here, we use next-generation sequencing to explore longitudinal variations in the tprK gene under normal infection and immunosuppression and benzathine penicillin G treatment in a rabbit model infected with the Amoy strain with heterogeneous tprK sequences. The overall diversity of tprK in all three groups was high and decreased during infection, exhibiting a "more to less" trend. Benzathine penicillin G treatment reduced the diversity of tprK but increased the frequency of predominant sequence changes. Moreover, the original predominant V region sequence did not disappear as the disease progressed but remained at a relatively high proportion within the population. The research results give us a new understanding about tprK variation.


Subject(s)
Syphilis , Treponema pallidum , Animals , Rabbits , Humans , Treponema pallidum/genetics , Penicillin G Benzathine , Treponema/genetics , Persistent Infection
7.
Microbiol Spectr ; 11(3): e0493122, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036342

ABSTRACT

TprK antigenic variation is acknowledged as an important strategy developed by Treponema pallidum to achieve immune evasion. Previous studies applied short-read sequencing to explore tprK gene sequence diversity in clinical samples; however, due to the limitations of short-read sequencing, it was difficult to determine the linkage between the seven V regions, and crucial information about full-length tprK variants was lost. Although two recent studies explored complete tprK gene profiles in natural human syphilis infection, there are still too few profiled full-length tprK variants among clinical T. pallidum isolates to fully understand the characteristics of TprK coding diversity. Here, Pacific Biosciences (PacBio) long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. A total of 398 high-confidence full-length sequences, which presented remarkable sequence heterogeneity, were found. However, these full-length tprK variants exhibited limited variation in length and GC content, showing 24 length types and average GC content of 51.5 ± 0.42% and 51.6 ± 0.26% for primary and secondary syphilis samples, respectively. Additionally, the combined patterns of mutated V regions generating new tprK variants were obviously different in primary and secondary syphilis samples. The diversity of tprK gene sequences in primary syphilis samples may represent the underlying variability of the bacterium; conversely, the variability of the tprK gene in secondary syphilis samples may more accurately reflect how T. pallidum escapes host immune clearance. These data highlight the tprK gene as an important coding gene that shows conflicting genetic characteristics but underlies the persistence of spirochete infection. IMPORTANCE The resurgence of syphilis in both low- and high-income countries has attracted attention, and persistent infection by the pathogen has long been a research focus. The tprK gene, encoding the hypervariable outer membrane protein, is thought to be responsible for pathogen immune evasion and persistent infection. Here, PacBio long-read sequencing was applied to examine the diversity of full-length tprK variants in 21 clinical T. pallidum isolates from 11 patients with primary syphilis and 10 patients with secondary syphilis. The results showed that the sequences of the tprK gene were remarkably heterogeneous; however, the sequences presented limited variation in length and GC content. The investigation of the combined patterns of the V regions allowed us to gain insight into the features of the tprK gene generating new variants at different clinical stages. The findings of this study will be helpful for further exploration of the pathogenesis of syphilis.


Subject(s)
Syphilis , Humans , Syphilis/microbiology , Persistent Infection , Treponema pallidum/genetics
8.
J Med Virol ; 95(4): e28703, 2023 04.
Article in English | MEDLINE | ID: mdl-36965144

ABSTRACT

Given the prevalence of low-pathogenic but highly infectious Omicron variants, a cohort study was conducted to assess the response and duration of novel coronavirus-inactivated vaccine-induced antibodies 1 year after the third dose (Day 641). Blood samples were collected and anti-spike neutralizing antibodies (neutralizing antibody), total antibodies against the receptor-binding domain of the spike protein (total antibody), and immunoglobulin G antibodies against the spike protein (IgG antibody) were determined. Antibody kinetics and attenuation were evaluated. The results showed that the levels of neutralizing, total, and IgG antibodies on Day 641 were 98.05 IU/mL, 152.8 AU/mL, and 7.68 S/CO, respectively. Levels of anti-SARS-CoV-2 antibodies were higher in the younger subgroup than in the older subgroup at several time points after the second and third doses. The seropositive rate of neutralizing antibodies providing protection from infection or severe infection was 46.87% and 87.5%, and the seropositive rates of total antibody and IgG antibody were maintained at 100% and 90.63%, respectively. The half-lives of neutralizing, total, and IgG antibodies were 186.89, 363.04, and 417.50 days, respectively. Collectively, anti-SARS-CoV-2 antibodies may provide a certain degree of protection from infection 1 year after the third dose and high protection from severe infection.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Prospective Studies , Cohort Studies , Longitudinal Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G
9.
Front Public Health ; 11: 1105847, 2023.
Article in English | MEDLINE | ID: mdl-36817920

ABSTRACT

Background: Nontreponemal and treponemal tests for analyzing cerebrospinal fluid to confirm the existence of neurosyphilis have been widely used, so we aim to evaluate and compare their performance on the cerebrospinal fluid in the diagnosis of neurosyphilis. Methods: We conducted a systematic literature search on five databases and utilized a bivariate random-effects model to perform the quantitative synthesis. Results: Nontreponemal tests demonstrated a pooled sensitivity of 0.77 (95% CI: 0.68-0.83), a pooled specificity of 0.99 (95% CI: 0.97-1.00), and a summary AUC of 0.97 (95% CI: 0.95-0.98). The pooled sensitivity, pooled specificity, and summary AUC of treponemal tests were 0.95 (95% CI: 0.90-0.98), 0.85 (95% CI: 0.67-0.94), and 0.97 (95% CI: 0.95-0.98), respectively. The pooled specificity of all nontreponemal tests varied minimally (ranging from 0.97 to 0.99), with TRUST (0.83) having a higher pooled sensitivity than VDRL (0.77) and RPR (0.73). Among all treponemal tests, EIA has outstanding diagnostic performance with a pooled sensitivity of 0.99 and a pooled specificity of 0.98. Conclusion: Nontreponemal tests exhibited a higher pooled specificity, and treponemal tests exhibited a higher pooled sensitivity in diagnosing neurosyphilis on cerebrospinal fluid. TRUST may be a satisfactory substitute for VDRL. EIA is a prospective diagnostic tool that deserves further study in the future. Our study may be useful to clinical laboratories in selecting appropriate serological tests on the cerebrospinal fluid for the diagnosis of neurosyphilis.


Subject(s)
Neurosyphilis , Treponema pallidum , Humans , Syphilis Serodiagnosis , Prospective Studies , Neurosyphilis/cerebrospinal fluid , Neurosyphilis/diagnosis , Data Management
10.
RSC Adv ; 13(4): 2269-2282, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741132

ABSTRACT

Six lanthanide complexes constructed from two chiral ß-diketonates (d/l-fbc = 3-heptafluorobutyryl-(+)/(-)-camphorate), the stilbene derivative (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (L), a trifluoroacetate anion (CF3CO2 -), and one water molecule, namely [Ln(d/l-fbc)2(L)(CF3CO2)]·H2O (LnC57H54F17N4O8, Ln = La (1, d-fbc), La (2, l-fbc), Sm (3, d-fbc), Eu (4, d-fbc), Eu (5, l-fbc), and Tb (6, d-fbc), were synthesized and characterized by single-crystal X-ray diffraction, 1H-NMR, elemental analysis, IR and UV-vis spectroscopy, and thermal gravimetric analysis. The photoisomerization reactions of these complexes were systematically studied by means of experimental and theoretical calculations. Crystals of complexes 1, 2, 3, and 4 were obtained and belong to the monoclinic crystal system and the C2 chiral space group. The Λ- and Δ-diastereomers coexist in their crystals and no apparent bisignate couplets are observed in their ECD spectra. Among the complexes, the photocyclization reaction is followed by the trans-to-cis photoisomerization reaction and competes with the trans-to-cis photoisomerization, then the photocyclization reaction continues. The photocyclization reaction is irreversible in this stilbene derivative and is delayed in the lanthanide complexes. These results provide a viable strategy for the design of promising new stilbene-attached dual-functional lanthanide-based optical-switching materials.

11.
Travel Med Infect Dis ; 52: 102548, 2023.
Article in English | MEDLINE | ID: mdl-36758806

ABSTRACT

BACKGROUND: We aim to determine if nasal samples have equivalent detection sensitivity to nasopharyngeal swabs for RAT and evaluate the diagnostic accuracy of nasal swabs with RAT. METHODS: PubMed and Web of Science were searched for eligible studies published before August 23, 2022. A bivariate random effects model was used to perform the quantitative synthesis. RESULTS: The pooled sensitivity, pooled specificity, positive likelihood ratio, negative likelihood ratio, and summary AUC on nasal swabs with RAT were 0.81 (95% CI, 0.77-0.85), 1.00 (95% CI: 0.99-1.00), 0.97 (95% CI, 0.95-0.98), 298.91 (95% CI, 144.71-617.42) and 0.19 (95% CI, 0.15-0.23), respectively. WHO required RAT kits to perform with a sensitivity of 0.80 and a specificity of 0.97, nasal swabs (0.81) achieved the required sensitivity while nasopharyngeal swabs (0.75) did not. The symptomatic population yielded higher pooled sensitivity than the asymptomatic population (0.86 versus 0.71), with a pooled sensitivity of 0.90 for five days of symptom onset. CONCLUSION: Nasal sampling had a great performance and yielded a high sensitivity in detecting SARS-CoV-2 using RAT, we believe that RAT performed with nasal swabs is a good alternative for detecting SARS-CoV-2, especially early in the onset of symptoms.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Immunologic Tests , Nose
12.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36680032

ABSTRACT

To obtain more insight into IgM in anti-SARS-CoV-2 immunity a prospective cohort study was carried out in 32 volunteers to longitudinally profile the kinetics of the anti-SARS-CoV-2 IgM response induced by administration of a three-dose inactivated SARS-CoV-2 vaccine regimen at 19 serial time points over 456 days. The first and second doses were considered primary immunization, while the third dose was considered secondary immunization. IgM antibodies showed a low secondary response that was different from the other three antibodies (neutralizing, total, and IgG antibodies). There were 31.25% (10/32) (95% CI, 14.30-48.20%) of participants who never achieved a positive IgM antibody conversion over 456 days after vaccination. The seropositivity rate of IgM antibodies was 68.75% (22/32) (95% CI, 51.80-85.70%) after primary immunization. Unexpectedly, after secondary immunization the seropositivity response rate was only 9.38% (3/32) (95% CI, 1.30-20.10%), which was much lower than that after primary immunization (p = 0.000). Spearman's correlation analysis indicated a poor correlation of IgM antibodies with the other three antibodies. IgM response in vaccinees was completely different from the response patterns of neutralizing, total, and IgG antibodies following both the primary immunization and the secondary immunization and was suppressed by pre-existing immunity induced by primary immunization.

13.
Int J Infect Dis ; 127: 36-44, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36400375

ABSTRACT

OBJECTIVES: To evaluate the possibility of using cerebrospinal fluid (CSF) ubiquitin C-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and neurofilament light protein (NF-L) for the diagnosis of neurosyphilis (NS). METHODS: A cross-sectional study of 576 subjects was conducted at Zhongshan Hospital from January 2021 to August 2022 to evaluate the diagnostic accuracy of CSF UCH-L1, GFAP, and NF-L for NS and analyze their correlations with CSF rapid plasma reagin (RPR), white blood cells (WBCs), and protein. RESULTS: Patients with NS had higher CSF UCH-L1, GFAP, and NF-L levels than patients with syphilis/non-NS and nonsyphilis. Using a cut-off point of 652.25 pg/ml, 548.89 pg/ml, and 48.38 pg/ml, CSF UCH-L1, GFAP, and NF-L had a sensitivity of 85.11%, 76.60%, and 82.98%, with a specificity of 92.22%, 85.56%, and 91.11%, respectively, for NS diagnosis. Moreover, parallel and serial testing algorithms improved their sensitivity and specificity to 93.62% and 98.89%, respectively. Interestingly, levels between patients with NS who are CSF RPR-positive and -negative did not differ and showed a weak or moderate correlation with WBC and CSF protein in patients with syphilis. CONCLUSION: CSF UCH-L1, GFAP, and NF-L can be used as novel markers for the diagnosis of NS, independent of CSF RPR, WBC, and proteins.


Subject(s)
HIV Infections , Neurosyphilis , Syphilis , Humans , Ubiquitin Thiolesterase , Tumor Necrosis Factor Ligand Superfamily Member 14 , Biomarkers , Neurofilament Proteins , Glial Fibrillary Acidic Protein , Intermediate Filaments , Cross-Sectional Studies , Neurosyphilis/diagnosis , HIV Infections/diagnosis
14.
J Eur Acad Dermatol Venereol ; 37(3): 558-572, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36373343

ABSTRACT

BACKGROUND: Pathological angiogenesis is an important manifestation of syphilis, but the underlying mechanism of Treponema pallidum subspecies pallidum (T. pallidum)-induced angiogenesis is poorly understood. OBJECTIVES: The objective of this study is to investigate the role and related mechanism of the T. pallidum membrane protein Tp47 in angiogenesis. METHODS: The proangiogenic activity of recombinant T. pallidum membrane protein Tp47 in human umbilical vein endothelial cells (HUVECs) was assessed by tube formation assay, three-dimensional angiogenesis analysis and experiments with a zebrafish embryo model. The effects of mitochondrial ROS and NADPH oxidase on intracellular ROS induced by Tp47 were further investigated. Furthermore, the levels of autophagy-related proteins and autophagic flux were measured. Finally, the role of ROS-induced autophagy in angiogenesis was studied. RESULTS: Tp47 promoted tubule formation and the formation of angiogenic sprouts in vitro. In addition, a significant increase in the number of subintestinal vessel branch points in zebrafish injected with Tp47 was observed using a zebrafish embryo model. Tp47 also significantly increased intracellular ROS levels in a dose-dependent manner. Tp47-induced tube formation and angiogenic sprout formation were effectively prevented by the ROS inhibitor NAC. In addition, Tp47 enhanced the production of mitochondrial ROS and expression of the NADPH oxidase-related proteins Nox2 and Nox4. The production of mitochondrial ROS and intracellular ROS was reduced by the NADPH oxidase inhibitors DPI and apocynin. Furthermore, Tp47 significantly increased expression of the autophagy-related proteins P62 and Beclin 1 and the LC3-II/LC3-I ratio and promoted an increase in autophagic flux, which could be effectively rescued by coincubation with the ROS inhibitor NAC. Further intervention with the autophagy inhibitor BafA1 significantly inhibited tube formation and angiogenic sprout formation. CONCLUSIONS: Tp47-induced NADPH oxidase enhanced intracellular ROS production via mitochondrial ROS and promoted angiogenesis through autophagy mediated by ROS. These findings may contribute to our understanding of pathological angiogenesis in syphilis.


Subject(s)
Membrane Proteins , Syphilis , Treponema pallidum , Animals , Humans , Autophagy , Autophagy-Related Proteins/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Membrane Proteins/metabolism , NADPH Oxidases/metabolism , Neovascularization, Pathologic , Reactive Oxygen Species/metabolism , Syphilis/microbiology , Treponema pallidum/physiology , Zebrafish
16.
Heliyon ; 8(12): e12065, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36561703

ABSTRACT

The invasive capability of Treponema. pallidum is central to its infection process. Matrix metalloproteinases (MMPs), which are specifically inhibited by the tissue inhibitors of metalloproteinases (TIMPs), play a pivotal role in promoting pathogenic invasion by destroying tissue barriers within the body. This study aimed to explore the effect of T. pallidum protein Tp0136 on the balance of MMPs/TIMPs in human dermal vascular smooth muscle cells (HDVSMCs) and the related underlying mechanisms. A number of in vitro studies were conducted to access the impact of recombinant Tp0136 protein on the balance of MMPs/TIMPs in HDVSMCs. The involvement of the PI3K, MAPK, and NF-κB signaling pathways in this process was also investigated. Tp0136 induced the mRNA and protein expressions of MMP1 in HDVSMCs in a concentration-dependent way. In addition, MMP1/TIMP1 and MMP1/TIMP2 ratios were also increased. Furthermore, the study demonstrated that treatment of HDVSMCs with Tp0136 activated the PI3K, MAPK, and NF-κB signaling pathways. Inhibition of PI3K, JNK, P38, and NF-κB, suppressed MMP1 expression and reduced the induction of MMP1/TIMP1 and MMP1/TIMP2 ratios by Tp0136. These findings demonstrate that Tp0136 enhanced the expression of MMP1 involving the PI3K, MAPK, and NF-κB signaling pathways in HDVSMCs, and thus generated the unbalance of MMPs/TIMP, which could contribute to the early spread of T. pallidum and pathogenesis of syphilis.

17.
J Clin Med ; 11(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36556110

ABSTRACT

BACKGROUND: The early detection of COVID-19 patients is fundamental for containing the pandemic. A reverse-transcriptase quantitative polymerase chain reaction (RT-PCR), which detects SARS-CoV-2 RNA, is the gold standard diagnostic test, although it can contribute to false-negative results. Consequently, supplementary diagnostic tests are urgently needed. METHODS: To assess the value of anti-SARS-CoV-2 antibody-based tests for confirming COVID-19, a retrospective study was conducted on 3120 inbound overseas travelers who underwent a 14-day government quarantine in Xiamen from August 2020 to October 2020. The diagnostic accuracy of the total antibody that detected the anti-SARS-CoV-2 antibody and the RT-PCR that detected SARS-CoV-2 RNA was determined in comparison to the clinical diagnosis. RESULTS: The COVID-19 positive rate was 3.14% (98/3120). The sensitivity and specificity of the RT-PCR test on the first day of quarantine were 14.29% and 100%, respectively, and the sensitivity and specificity of the total antibody were 93.88% and 99.40%, respectively. The kappa value between an RT-PCR on the first day of quarantine and a clinical diagnosis was 0.24 (95% CI, 0.14-0.35), indicating poor consistency. The kappa value between total antibodies and a clinical diagnosis was 0.88 (95% CI, 0.83-0.93), indicating perfect consistency. There were no differences in the positive rates of an RT-PCR in symptomatic COVID-19 (7.41% (2/27)) and asymptomatic COVID-19 (16.90 (12/71) (p = 0.338). Similarly, the positive rate of the total antibody tests showed no difference in symptomatic COVID-19 (96.30% (26/27)) and asymptomatic COVID-19 (92.96% (66/71)) (p = 0.676). CONCLUSION: SARS-CoV-2 antibodies are developed by the body in response to an infection or after vaccination; this can easily lead to a missed diagnosis. In the context of low sensitivity for an RT-PCR, SARS-CoV-2 antibody detection is an effective adjunct to RT-PCR detection, which can improve the diagnostic accuracy of COVID-19 and provide an effective complement to the false-negative results of an RT-PCR.

18.
J Infect Public Health ; 15(12): 1494-1496, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413872

ABSTRACT

To evaluate the application of cycle threshold (Ct) values of coronavirus disease 2019 (COVID-19) patients in predicting epidemic dynamics and monitoring surface contamination. The Ct value of reverse transcriptase-polymerase chain reaction for SARS­CoV-2 from COVID-19 patients inbound overseas in Xiamen, China was collected from October 2020 to December 2021, and the correlation of patients' Ct values with epidemic dynamics and surface contamination was evaluated. The results showed that there was an extreme inverse correlation of positivity rate in the current calendar month (ORF1ab, r = -0.692, P = 0.004; N,r = -0.629, P = 0.012) and the following calendar month (ORF1ab,r = -0.801, P = 0.001; N,r = -0.620, P = 0.018) with the median Ct values. Ct value showed better performance for monitoring surface contamination, with the area under the curve value 0.808(95 %CI: 0.748-0.869) for ORF1ab and 0.807(95 %CI:0.746-0.868) for the N gene. The patients' ORF1ab Ct value< 29.09 or N Ct value< 28.03 were 11.25 times and 10.48 times more likely to result in surface contamination than those with ORF1ab Ct value ≥ 29.09 or N Ct value≥ 28.03 (OR:11.25,95 % CI: 5.52-22.35; OR:10.48,95 % CI:5.29-20.70). Ct values were associated with the positivity rate in the current or following calendar month and predicted the epidemic dynamics. The Ct values can be used as a predictor for monitoring surface contamination to develop public health responses to COVID-19.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Public Health
19.
Microbiol Res ; 265: 127185, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36113309

ABSTRACT

To assess the diagnostic accuracy of the rapid antigen test (RAT) compared with RT-PCR (reference standard) for SARS-CoV-2, we searched MEDLINE/PubMed and Web of Science for relevant records. The QUADAS-2 tool was used to assess study quality, and quantitative synthesis was conducted using a bivariate random-effects model. The meta-analysis included 135 studies (166,943 samples). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.76 (95%CI: 0.73-0.79), 1.00 (95%CI: 1.00-1.00), 276.1 (95% CI, 184.1-414.1), 0.24 (95% CI, 0.21-0.27), and 1171 (95% CI, 782-1755), respectively. Compared to other sample types, nasal samples had the best RAT sensitivity [0.79 (95%CI: 0.71-0.85)]. The sensitivities of the different RAT kits ranged from 0.41 (95%CI: 0.23-0.61) to 0.90 (95%CI: 0.70-0.97). Sensitivity was markedly better in samples with lower Ct, and RAT achieved excellent pooled sensitivity at 1.00 (95%CI: 0.70-1.00) among samples with Ct < 20. Testing within 10 days of symptom onset resulted in a high sensitivity. For ≤ 3, ≤ 7, and ≤ 10 days, the sensitivities were 0.91 (95%CI: 0.83-0.96), 0.89 (95%CI: 0.84-0.93), and 0.88 (95%CI: 0.83-0.92), respectively. RAT kits show high sensitivity and specificity in early infection, especially when the viral load is high. Moreover, using nasal samples for antigen testing, which are moderately sensitive and patient-friendly, is a reliable alternative to nasopharyngeal sampling. RAT might be effective for fighting the COVID-19 pandemic; however, it must be complemented by the careful handling of negative test results.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Sensitivity and Specificity
20.
Future Microbiol ; 17: 873-886, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35833787

ABSTRACT

Aim: The present study examined the membrane location of cardiolipin antigen in treponemes. Materials & methods: The authors used different methods to disrupt the outer membrane of treponemes, detected the location of the cardiolipin antigen and analyzed the immune response in rabbits immunized with various antigens. Results: All organisms were labeled with nontreponemal antibodies on immunoelectron and fluorescence microscopy, except the citrate buffer-treated group, which is a method leading to relatively complete removal. Except for citrate buffer-treated spirochetes, all treponemes produced low-titer, nontreponemal antibodies in immunized rabbits. Conclusion: These findings indicated that the cardiolipin antigen was localized in the outer membrane of spirochetes. This study provided further evidence of the origin of nontreponemal antibodies during Treponema pallidum infection.


Subject(s)
Syphilis , Treponema pallidum , Animals , Antibodies , Antibodies, Bacterial , Cardiolipins , Citrates , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...