Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Microbiol ; 15(10): 1722-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23551616

ABSTRACT

Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM-1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high-glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM-1 expression by invasion of high-glucose-treated P. gingivalis (HGPg). A high-glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM-1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg-induced ICAM-1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF-κB- and Sp1-DNA-binding activities in HGFs. Inhibition of NF-κB and Sp1 activations blocked the HGPg-induced ICAM-1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM-1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg-dependent ICAM-1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.


Subject(s)
Fibroblasts/microbiology , Glucose/metabolism , Host-Pathogen Interactions , Intercellular Adhesion Molecule-1/biosynthesis , Porphyromonas gingivalis/immunology , Porphyromonas gingivalis/physiology , Cells, Cultured , Endocytosis , Gene Expression , Humans , MAP Kinase Signaling System , Proto-Oncogene Proteins c-akt/metabolism
2.
Article in English | MEDLINE | ID: mdl-23365613

ABSTRACT

Cortex periplocae is the dried root bark of Periploca sepium Bge., a traditional Chinese herb medicine. It contains high amounts of cardiac glycosides. Several cardiac glycosides have been reported to inhibit tumor growth or induce tumor cell apoptosis. We extracted and purified cortex periplocae and identified periplocin as the active ingredient that inhibited the growth of TNF-related apoptosis-inducing ligand-(TRAIL-) resistant hepatocellular carcinoma cells. The antitumor activity of periplocin was further increased by TRAIL cotreatment. Periplocin sensitized TRAIL-resistant HCC through the following two mechanisms. First, periplocin induced the expression of DR4 and FADD. Second, the cotreatment of TRAIL and periplocin suppressed several inhibitors of apoptosis (IAPs). Both mechanisms resulted in the activation of caspase 3, 8, and 9 and led to cell apoptosis. In addition, intraperitoneal injection (IP) of periplocin repressed the growth of hepatocellular carcinoma (HCC) in xenograft tumor model in mice. In summary, periplocin sensitized TRAIL-resistant HCC cells to TRAIL treatment and resulted in tumor cell apoptosis and the repression of tumor growth in vivo.

3.
Article in English | MEDLINE | ID: mdl-23304212

ABSTRACT

Chlorella sorokiniana (CS) is a unicellular green alga. The extracts of Chlorella have been used as treatments for relieving hypertension and modulating immune response. The detailed mechanisms are not clear yet. In this study, we sought to study the molecular mechanisms for the polysaccharide fraction of CS-induced immune response. We pulsed dendritic cells (DCs) with CS and found that CS could maturate DCs. CS-maturated DC could activate naïve T cells and stimulate T-cell proliferation and IFN-γ secretion. Furthermore, CS activated PI3K and MAPKs signaling pathways in DCs by interacting with TLR4 receptor. These CS-activated signaling pathways could further activate NF-κB and induce IL-12 production in DCs. This study provides molecular mechanisms for CS-induced DCs activation and immune response.

SELECTION OF CITATIONS
SEARCH DETAIL
...