Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Foods ; 13(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38890877

ABSTRACT

This study investigates innovative approaches to improve the quality and aroma characteristics of Muscat Hamburg wine production by substituting the conventional Saccharomyces cerevisiae yeast with an efficient fermentation strain of Schizosaccharomyces pombe. The typical use of S. cerevisiae in Muscat Hamburg wine often leads to uniformity and prolonged processing times, requiring subsequent malolactic fermentation to degrade excessive malic acid. The study advocates for the replacement of S. cerevisiae with a specific S. pombe strain, Sp-410, isolated from the fermented grains of sauce-flavor Baijiu, a Chinese spirit. Muscat Hamburg wine fermented with the S. pombe strain demonstrates decreased malic acid levels, offering a potential alternative to malolactic fermentation. However, exclusive S. pombe fermentation may result in an overproduction of acetic acid metabolites, leading to a monotonous taste. In response, the study proposes a mixed fermentation approach, combining the S. pombe strain with a Saccharomyces uvarum strain and a non-Saccharomyces yeast, Torulaspora delbrueckii. The optimized mixed fermentation strategies (M:SP+TD and M60SP+TD) involve specific proportions and intervals of inoculation, aiming to enhance the quality and aroma complexity of Muscat Hamburg wine. In conclusion, this research contributes to advancing the production of high-quality Muscat Hamburg wines, utilizing S. pombe as the primary yeast strain and implementing mixed fermentation methodologies.

2.
Trends Biotechnol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38879399

ABSTRACT

It is believed that nitrogen-fixing eukaryotes do not exist in nature, and constructing such eukaryotes is extremely challenging. Coale et al., however, have identified the first eukaryote capable of fixing nitrogen through a nitroplast organelle. Understanding the eukaryotic nitrogen-fixing machinery may advance the development of artificial nitrogen-fixing crops and industrial yeasts.

3.
Lipids Health Dis ; 23(1): 186, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872138

ABSTRACT

BACKGROUND: Evidence on the association between visceral lipid accumulation and infertility remains limited and controversial. Therefore, the current investigation is the first investigation to unveil this correlation by utilizing novel indicators of visceral lipid accumulation. METHODS: The present study utilized the NHANES 2013-2020 dataset. Researchers utilized multiple logistic regression, smoothed curve fitting, and subgroup analysis to investigate the associations of waist circumference (WC), metabolic score for visceral fat (METS-VF), lipid accumulation product (LAP), visceral adiposity index (VAI) with infertility. Additionally, the eXtreme Gradient Boosting (XGBoost) algorithm model was utilized to evaluate the relative importance of the factors. RESULTS: After adjusting for potential factors that could influence the results, researchers discovered that all these four indicators of visceral lipid accumulation exhibited strong positive correlations with the probability of infertility. The subgroup analysis demonstrated that the correlations remained consistent in the majority of subgroups (P for interaction > 0.05). The results of XGBoost algorithm model indicate that METS-VF is the most meaningful factor in infertility. The ROC curve research revealed that while METS-VF had the greatest AUC values, there was no variation in the AUC value of different markers of visceral fat accumulation (P > 0.05). CONCLUSIONS: The present investigation discovered that increased WC, METS-VF, LAP, and VAI were associated with a heightened prevalence of infertility.


Subject(s)
Intra-Abdominal Fat , Waist Circumference , Humans , Female , Intra-Abdominal Fat/metabolism , Adult , Cross-Sectional Studies , United States/epidemiology , Middle Aged , Infertility, Female/metabolism , ROC Curve , Infertility/metabolism , Lipid Metabolism , Metabolic Syndrome/metabolism , Nutrition Surveys , Adiposity
4.
Food Res Int ; 187: 114327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763631

ABSTRACT

The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.


Subject(s)
Fermentation , Food Microbiology , Hot Temperature , Food Handling/methods , Phenotype , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism
5.
Food Chem ; 441: 138274, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38181665

ABSTRACT

Descriptive sensory analysis, headspace solid-phase microextraction-gas chromatography-mass spectrometry, gas chromatography-flame ionization detector and multivariate statistical analysis were used to elucidate the regional dependence of sauce-flavor baijiu (SFB). Although SFB samples from different regions couldn't be clearly classified by sensory profiles, they could be clearly divided into 5 groups in principal component analysis plot based on quantitative targeted flavoromics analysis. And then, the relationship between sensory attributes and volatile compounds were investigated by network analysis. Twenty regional aroma markers were identified by multivariate statistical analysis to distinguish SFB samples from different regions. Furthermore, the influence of manufacturing operation on SFB in Guizhou region was further analyzed. Thirty-eight potential compounds were significant different in Guizhou SFB samples with different manufacturing operations. This study not only provides a better understanding of regional dependence on SFB flavor, but also further clarifies the inheritance importance of manufacturing operation in traditional SFB production.


Subject(s)
Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Food , Odorants/analysis , Flavoring Agents/analysis
6.
Dig Liver Dis ; 56(1): 92-97, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37659917

ABSTRACT

BACKGROUND: Emerging clinical evidence has been discovered associating Inflammatory bowel disease (IBD) with Henoch-Schönlein purpura (HSP) and immune thrombocytopenia (ITP). However, it is unclear whether a cause-effect relationship exists between them. We aimed to examine the casual effect of IBD on the risk of HSP and ITP. METHODS: Based on summary statistics from International IBD Genetics (IIBDG) Consortium and FinnGen study, a two-sample Mendelian randomization study was carried out to determine whether IBD including ulcerative colitis (UC) and Crohn's disease (CD) is causally related to HSP, ITP or secondary thrombocytopenia. To support the results, a variety of sensitivity analyses were performed. RESULTS: Significant causal relationships between IBD and HSP (odds ratios = 1.20, 95% confidence interval: 1.07-1.36, adjusted P = 0.006) and ITP (odds ratios =1.22, 95% confidence interval: 1.08-1.38, adjusted P = 0.006) were found. Both genetically predicted UC and CD were positively related with ITP, while CD alone may be responsible for the higher risk of HSP. Besides, no significant association was observed between IBD and secondary thrombocytopenia. CONCLUSIONS: The results of this Mendelian randomization study supported the causal association of IBD with HSP and ITP. Taken together, our findings may present implications for management of IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , IgA Vasculitis , Inflammatory Bowel Diseases , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/genetics , Mendelian Randomization Analysis , IgA Vasculitis/complications , IgA Vasculitis/genetics , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/genetics , Crohn Disease/genetics , Colitis, Ulcerative/complications , Colitis, Ulcerative/genetics
7.
Food Chem ; 438: 137932, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37979271

ABSTRACT

"Empty cup aroma" is an important characteristic and quality evaluation standard of Jiangxiang-type Baijiu (JXB). In this study, an in situ detection method for the empty cup aroma of JXB was established, and the authenticity and origin information of JXB were identified with an untargeted flavoromics strategy. The complex composition of JXB leads to slow ethanol volatilization, which is a potential method for identifying artificial JXB. The results of the sensory analysis showed that acidic, sauce, burnt and qu in the empty cup of JXB were the strongest at the 45 min stage. A total of 155 compounds were detected in the empty cups of 15 JXB from different regions during 45 min of standing, and 34 compounds were identified as key aroma compounds in the empty cups of JXB. Eleven potential markers were screened (VIP > 1), which can be used to distinguish JXB produced in Guizhou/Sichuan and other regions.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Ethanol/analysis , Volatilization
8.
J Fungi (Basel) ; 9(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37108877

ABSTRACT

Methanol, which produced in large quantities from low-quality coal and the hydrogenation of CO2, is a potentially renewable one-carbon (C1) feedstock for biomanufacturing. The methylotrophic yeast Pichia pastoris is an ideal host for methanol biotransformation given its natural capacity as a methanol assimilation system. However, the utilization efficiency of methanol for biochemical production is limited by the toxicity of formaldehyde. Therefore, reducing the toxicity of formaldehyde to cells remains a challenge to the engineering design of a methanol metabolism. Based on genome-scale metabolic models (GSMM) calculations, we speculated that reducing alcohol oxidase (AOX) activity would re-construct the carbon metabolic flow and promote balance between the assimilation and dissimilation of formaldehyde metabolism processes, thereby increasing the biomass formation of P. pastoris. According to experimental verification, we proved that the accumulation of intracellular formaldehyde can be decreased by reducing AOX activity. The reduced formaldehyde formation upregulated methanol dissimilation and assimilation and the central carbon metabolism, which provided more energy for the cells to grow, ultimately leading to an increased conversion of methanol to biomass, as evidenced by phenotypic and transcriptome analysis. Significantly, the methanol conversion rate of AOX-attenuated strain PC110-AOX1-464 reached 0.364 g DCW/g, representing a 14% increase compared to the control strain PC110. In addition, we also proved that adding a co-substrate of sodium citrate could further improve the conversion of methanol to biomass in the AOX-attenuated strain. It was found that the methanol conversion rate of the PC110-AOX1-464 strain with the addition of 6 g/L sodium citrate reached 0.442 g DCW/g, representing 20% and 39% increases compared to AOX-attenuated strain PC110-AOX1-464 and control strain PC110 without sodium citrate addition, respectively. The study described here provides insight into the molecular mechanism of efficient methanol utilization by regulating AOX. Reducing AOX activity and adding sodium citrate as a co-substrate are potential engineering strategies to regulate the production of chemicals from methanol in P. pastoris.

9.
Biotechnol Biofuels Bioprod ; 16(1): 72, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118827

ABSTRACT

BACKGROUND: In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS: In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS: Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.

10.
Foods ; 12(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36832870

ABSTRACT

Distilled jujube liquor is an alcoholic beverage made from jujube, which has a unique flavor and a sweet taste. The purpose of this study was to explore the effect of mixed fermentation on the quality of distilled jujube liquor by comparing the performance of mixed fermentation between S. cerevisiae, Pichia pastoris and Lactobacillus. The results showed that there were significant differences in the quality of the jujube liquor between the combined strains. Moreover, Lactobacillus increased and P. pastoris reduced the total acid content. The results from an E-nose showed that the contents of methyl, alcohol, aldehyde, and ketone substances in the test bottle decreased significantly after decanting, while the contents of inorganic sulfide and organic sulfide increased. Fifty flavor compounds were detected, including nineteen esters, twelve alcohols, seven ketones, six aldehydes, three alkenes, one furan, one pyridine, and one acid. There were no significant differences in the type or content of flavor compounds. However, PLS-DA showed differences among the samples. Eighteen volatile organic compounds with variable importance in projection values > 1 were obtained. There were sensory differences among the four samples. Compared with the sample fermented with only S. cerevisiae, the samples co-fermented with Lactobacillus or with P. pastoris had an obvious bitter taste and mellow taste, respectively. The sample fermented by all three strains had a prominent fruity flavor. Except for the sample fermented with only S. cerevisiae, the jujube flavor was weakened to varying degrees in all samples. Co-fermentation could be a valuable method to improve the flavor quality of distilled jujube liquor. This study revealed the effects of different mixed fermentation modes on the sensory flavor of distilled jujube liquor and provided a theoretical basis for the establishment of special mixed fermentation agents for distilled jujube liquor in the future.

11.
Food Microbiol ; 110: 104157, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36462813

ABSTRACT

Microbes have evolved multiple mechanisms to resist environmental stresses, which are regulated in complex and delicate ways. Though the role of cell membranes in acid resistance from the perspective of physicochemical properties and membrane proteins has been deeply studied, the function of eisosomes is still in its infancy. In this study, we firstly reported the dynamic changes of eisosomes under acid stress and the decreased acid tolerance of yeasts caused by eisosome disruption. Physiological indicators and non-targeted lipid profiling revealed that eisosome disruption caused changes in multiple lipids and imbalances in lipid homeostasis, which are responsible for membrane integrity damage. Thus the increased infiltration of carboxylic acids and the raised ROS levels were detected in strains with disrupted eisosome assembly, resulting in decreased cellular tolerance. The results here provide novel insights into the acid-resistant mechanism of yeasts from the perspective of the cell membrane subdomain, which has practical impacts on green biological manufacturing and food preservation.


Subject(s)
Membrane Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Cell Membrane , Carboxylic Acids , Lipids
12.
Appl Environ Microbiol ; 88(19): e0126322, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36165620

ABSTRACT

The thermophilic fungus Myceliophthora thermophila has been used to produce industrial enzymes and biobased chemicals. In saprotrophic fungi, the mechanisms regulating cellulase production have been studied, which revealed the involvement of multiple transcription factors. However, in M. thermophila, the transcription factors influencing cellulase gene expression and secretion remain largely unknown. In this study, we identified and characterized a novel cellulase regulator (MtTRC-1) in M. thermophila through a combination of functional genomics and genetic analyses. Deletion of Mttrc-1 resulted in significantly decreased cellulase production and activities. Transcriptome analysis revealed downregulation of not only the encoding genes of main cellulases but also the transcriptional regulator MtHAC-1 of UPR pathway after disruption of MtTRC-1 under cellulolytic induction conditions. Herein, we also characterized the ortholog of the yeast HAC1p in M. thermophila. We show that Mthac-1 mRNA undergoes an endoplasmic reticulum (ER) stress-induced splicing by removing a 23-nucleotide (nt) intron. Notably, the protein secretion on cellulose was dramatically impaired by the deletion of MtHAC-1. Moreover, the colonial growth on various carbon sources was defective in the absence of MtHAC-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays verified MtTRC-1 regulates the transcription of Mthac-1 and the major cellulase gene Mtcbh-1 by binding directly to the promoters in vitro and in vivo. Furthermore, DNase I footprinting assays identified the putative consensus binding site (5'-GNG/C-3'). These results revealed the importance of MtTRC-1 for positively regulating cellulase production. This finding has clarified the complex regulatory pathways involved in cellulolytic enzyme production. IMPORTANCE In the present study, we characterized a novel regulator MtTRC-1 in M. thermophila, which regulated cellulase production through direct transcriptional regulation of the Mthac-1 and Mtcbh-1 genes. Our data demonstrated that MtHAC-1 is a key factor for the cellulase secretion capacity of M. thermophila. Our data indicate that this thermophilic fungus regulates cellulase production through a multilevels network, in which the protein secretory pathway is modulated by MtHAC-1-dependent UPR pathway and the cellulase gene expression is directly regulated in parallel by transcription factors. The conservation of Mttrc1 in filamentous fungi suggests this mechanism may be exploited to engineer filamentous fungal cell factories capable of producing proteins on an industrial scale.


Subject(s)
Cellulase , Cellulases , Carbon/metabolism , Cellulase/genetics , Cellulase/metabolism , Cellulases/metabolism , Cellulose/metabolism , Deoxyribonuclease I/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Nucleotides , RNA, Messenger , Sordariales , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Biotechnol Biofuels ; 14(1): 33, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509260

ABSTRACT

BACKGROUND: Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. RESULTS: In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. CONCLUSIONS: RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.

14.
Front Microbiol ; 11: 596306, 2020.
Article in English | MEDLINE | ID: mdl-33324376

ABSTRACT

Baijiu is a traditional distilled beverage in China with a rich variety of aroma substances. 2,3,5,6-tetramethylpyrazine (TTMP) is an important component in Baijiu and has the function of promoting cardiovascular and cerebrovascular health. During the brewing of Baijiu, the microorganisms in jiuqu produce acetoin and then synthesize TTMP, but the yield of TTMP is very low. In this work, 2,3-butanediol dehydrogenase (BDH) coding gene BDH1 and another BDH2 gene were deleted or overexpressed to evaluate the effect on the content of acetoin and TTMP in Saccharomyces cerevisiae. The results showed that the acetoin synthesis of strain α5-D1B2 was significantly enhanced by disrupting BDH1 and overexpressing BDH2, leading to a 2.6-fold increase of TTMP production up to 10.55 mg/L. To further improve the production level of TTMP, the α-acetolactate synthase (ALS) of the pyruvate decomposition pathway was overexpressed to enhance the synthesis of diacetyl. However, replacing the promoter of the ILV2 gene with a strong promoter (PGK1p) to increase the expression level of the ILV2 gene did not result in further increased diacetyl, acetoin and TTMP production. Based on these evidences, we constructed the diploid strains AY-SB1 (ΔBDH1:loxP/ΔBDH1:loxP) and AY-SD1B2 (ΔBDH1:loxP-PGK1p-BDH2-PGK1t/ΔBDH1:loxP-PGK1p-BDH2-PGK1t) to ensure the fermentation performance of the strain is more stable in Baijiu brewing. The concentration of TTMP in AY-SB1 and AY-SD1B2 was 7.58 and 9.47 mg/L, respectively, which represented a 2.3- and 2.87-fold increase compared to the parental strain. This work provides an example for increasing TTMP production in S. cerevisiae by genetic engineering, and highlight a novel method to improve the quality and beneficial health attributes of Baijiu.

15.
J Ind Microbiol Biotechnol ; 47(6-7): 511-523, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32495196

ABSTRACT

d-Limonene, a cyclic monoterpene, possesses citrus-like olfactory property and multi-physiological functions. In this study, the d-limonene synthase (tLS) from Citrus limon was codon-optimized and heterologously expressed in Saccharomyces cerevisiae. The metabolic flux of canonical pathway based on overexpressing endogenous geranyl diphosphate synthase gene (ERG20) and its variant ERG20F96W-N127W was strengthened for improvement d-limonene production in Chinese Baijiu. To further elevate production, we established an orthogonal pathway by introducing neryl diphosphate synthase 1 (tNDPS1) from Solanum lycopersicum. The results showed that expressing ERG20 and ERG20F96W-N127W could enhance d-limonene synthesis, while expressing heterologous NPP synthase gene significantly increase d-limonene formation. Furthermore, we constructed a tLS-tNDPS1 fusion protein, and the best strain yielded 9.8 mg/L d-limonene after optimizing the amino acid linker and fusion order, a 40% improvement over the free enzymes during Chinese Baijiu fermentation. Finally, under the optimized fermentation conditions, a maximum d-limonene content of 23.7 mg/L in strain AY12α-L9 was achieved, which was the highest reported production in Chinese Baijiu. In addition, we also investigated that the effect of d-limonene concentration on yeast growth and fermentation. This study provided a meaningful insight into the platform for other valuable monoterpenes biosynthesis in Chinese Baijiu fermentation.


Subject(s)
Beverages , Limonene/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Dimethylallyltranstransferase/metabolism , Fermentation , Industrial Microbiology , Intramolecular Lyases/metabolism , Polyisoprenyl Phosphates/metabolism , Saccharomyces cerevisiae Proteins/genetics
16.
Metab Eng ; 61: 416-426, 2020 09.
Article in English | MEDLINE | ID: mdl-31078793

ABSTRACT

The production of fuels and chemicals from renewable plant biomass has been proposed as a feasible strategy for global sustainable development. However, the economic efficiency of biorefineries is low. Here, through metabolic engineering, Myceliophthora thermophila, a cellulolytic thermophilic fungus, was constructed into a platform that can efficiently convert lignocellulose into important bulk chemicals-four carbon 1, 4-diacids (malic and succinic acid), building blocks for biopolymers-without the need for extra hydrolytic enzymes. Titers of >200 g/L from crystalline cellulose and 110 g/L from plant biomass (corncob) were achieved during fed-batch fermentation. Our study represents a milestone in consolidated bioprocessing technology and offers a new and promising system for the cost-effective production of chemicals and fuels from biomass.


Subject(s)
Lignin/metabolism , Malates/metabolism , Sordariales , Succinic Acid/metabolism , Metabolic Engineering , Sordariales/genetics , Sordariales/metabolism
17.
Front Microbiol ; 10: 2317, 2019.
Article in English | MEDLINE | ID: mdl-31736884

ABSTRACT

Fungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unknown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 min) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.

18.
PLoS Genet ; 15(11): e1008510, 2019 11.
Article in English | MEDLINE | ID: mdl-31765390

ABSTRACT

Cellulolytic fungi have evolved a complex regulatory network to maintain the precise balance of nutrients required for growth and hydrolytic enzyme production. When fungi are exposed to cellulose, the transcript levels of cellulase genes rapidly increase and then decline. However, the mechanisms underlying this bell-shaped expression pattern are unclear. We systematically screened a protein kinase deletion set in the filamentous fungus Neurospora crassa to search for mutants exhibiting aberrant expression patterns of cellulase genes. We observed that the loss of stk-12 (NCU07378) caused a dramatic increase in cellulase production and an extended period of high transcript abundance of major cellulase genes. These results suggested that stk-12 plays a critical role as a brake to turn down the transcription of cellulase genes to repress the overexpression of hydrolytic enzymes and prevent energy wastage. Transcriptional profiling analyses revealed that cellulase gene expression levels were maintained at high levels for 56 h in the Δstk-12 mutant, compared to only 8 h in the wild-type (WT) strain. After growth on cellulose for 3 days, the transcript levels of cellulase genes in the Δstk-12 mutant were 3.3-fold over WT, and clr-2 (encoding a transcriptional activator) was up-regulated in Δstk-12 while res-1 and rca-1 (encoding two cellulase repressors) were down-regulated. Consequently, total cellulase production in the Δstk-12 mutant was 7-fold higher than in the WT. These results strongly suggest that stk-12 deletion results in dysregulation of the cellulase expression machinery. Further analyses showed that STK-12 directly targets IGO-1 to regulate cellulase production. The TORC1 pathway promoted cellulase production, at least partly, by inhibiting STK-12 function, and STK-12 and CRE-1 functioned in parallel pathways to repress cellulase gene expression. Our results clarify how cellulase genes are repressed at the transcriptional level during cellulose induction, and highlight a new strategy to improve industrial fungal strains.


Subject(s)
Cellulase/genetics , Fungal Proteins/genetics , Transcription Factors/genetics , Cellulose/genetics , Gene Expression Regulation, Fungal/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Neurospora crassa/enzymology , Neurospora crassa/genetics
19.
Molecules ; 24(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600996

ABSTRACT

Acetaminophen (APAP) overdose is very common worldwide and has been widely recognized as the leading cause of drug-induced liver injury in the Western world. In our previous investigation, auriculatone, a natural product firstly obtained from Aster auriculatus, has demonstrated a potent protective effect against APAP-induced hepatotoxicity in HL-7702 cells. However, the poor water solubility and low bioavailability restrict its application. Auriculatone sulfate (AS) is a sulfated derivative of auriculatone with highly improved water-solubility. Hepatoprotective effects against APAP-induced liver injury (AILI) showed that intragastric pretreatment with AS at 50 mg/kg almost completely prevented mice against APAP-induced increases of serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and ATPase. Histological results showed that AS could protect the liver tissue damage. In addition, AS pretreatment not only significantly retained hepatic malondialdehyde and the activities of glutathione, superoxide dismutase, and glutathione peroxidase at normal levels, but also markedly suppressed the increase of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 levels in mouse liver caused by overdose APAP. Immunohistochemical analysis showed that AS obviously attenuated the expression of CD45 and HNE in liver tissue. Further mechanisms of action investigation showed that inhibition of cytochrome P450 3A11 (CYP 3A11) and CYP2E1 enzymatic activities (but not that of CYP1A2) was responsible for APAP bioactivation. In conclusion, AS showed a hepatoprotective effect against AILI through alleviating oxidative stress and inflammation and inhibiting CYP-mediated APAP bioactivation. It may be an effective hepatoprotective agent for AILI and other forms of human liver disease.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Protective Agents/pharmacology , Animals , Cytokines/metabolism , Inflammation Mediators/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Structure , Oxidative Stress/drug effects , Protective Agents/chemistry , Reactive Oxygen Species/metabolism
20.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266859

ABSTRACT

It is essential for microbes to acquire information about their environment. Fungi use soluble degradation products of plant cell wall components to understand the substrate composition they grow on. Individual perception pathways have been well described. However, the interconnections between pathways remain poorly understood. In the present work, we provide evidence of crosstalk between the perception pathways for cellulose and the hemicellulose mannan being conserved in several filamentous fungi and leading to the inhibition of cellulase expression. We used the functional genomics tools available for Neurospora crassa to investigate this overlap at the molecular level. Crosstalk and competitive inhibition could be identified both during uptake by cellodextrin transporters and intracellularly. Importantly, the overlap is independent of CRE-1-mediated catabolite repression. These results provide novel insights into the regulatory networks of lignocellulolytic fungi and will contribute to the rational optimization of fungal enzyme production for efficient plant biomass depolymerization and utilization.IMPORTANCE In fungi, the production of enzymes for polysaccharide degradation is controlled by complex signaling networks. Previously, these networks were studied in response to simple sugars or single polysaccharides. Here, we tackled for the first time the molecular interplay between two seemingly unrelated perception pathways: those for cellulose and the hemicellulose (gluco)mannan. We identified a so far unknown competitive inhibition between the respective degradation products acting as signaling molecules. Competition was detected both at the level of the uptake and intracellularly, upstream of the main transcriptional regulator CLR-2. Our findings provide novel insights into the molecular communication between perception pathways. Also, they present possible targets for the improvement of industrial strains for higher cellulase production through the engineering of mannan insensitivity.


Subject(s)
Cellulase/biosynthesis , Cellulose/metabolism , Down-Regulation , Gene Expression Regulation, Fungal/drug effects , Mannans/metabolism , Neurospora crassa/metabolism , Signal Transduction/drug effects , Catabolite Repression , Gene Regulatory Networks , Genomics , Neurospora crassa/enzymology , Neurospora crassa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...