Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Plant Sci ; 15: 1303625, 2024.
Article in English | MEDLINE | ID: mdl-38357270

ABSTRACT

The Cypripedium forrestii is an orchid species with extremely small populations (PSESP) in Yunnan, China. C. forrestii is range-restricted and less-studied than many orchid species, and it is exposed to various threats to its survival. We investigated its potential habitats and collected 52 samples from eight locations, as well as two outgroup species for reference. We developed genetic markers (SNPs) for C. forrestii based on transcriptome sequencing (RNA-seq) data, and analyzed the genetic diversity, population structure, gene flow and demographic history of C. forrestii in detail. C. forrestii is a taxonomically independent species to protect. We found that the genetic diversity of C. forrestii was very low (1.7e-4) compared with other endangered species. We identified three genetic clusters, and several populations with distinct genetic backgrounds. Most genetic diversity was found within sampling sites (87.87%) and genetic clusters (91.39%). Gene flow has been greatly limited over the most recent generations, probably due to geographical distance, historical climate change and habitat fragmentation. We also detected a severe bottleneck event brought about by the recent population constraints. These factors, together with its reproductive characteristics, contribute to the population fragmentation and low genetic diversity of C. forrestii. Based on our findings, we suggest an integrative conservation strategy to protect and recover the genetic diversity of C. forrestii and a further comprehensive study of its ecological traits in the future.

2.
Front Oncol ; 12: 881906, 2022.
Article in English | MEDLINE | ID: mdl-36263204

ABSTRACT

According to a recent report by GLOBOCAN, colorectal cancer is the third most common and second most deadly cancer in 2020. In our previous proteomic study, we found that the expression of GSTM2 in colon tissues was significantly lower than that in para-cancer tissues, and its lower expression was associated with reduced overall survival rate of patients, suggesting that this gene might play a role in the occurrence of colon cancer. As a member of the detoxifying enzyme family, GSTM2 is likely to play an important role in the initiation of tumors. Whereas, the functions of GSTM2 in colon cancer are barely known. In this study, using the RNA-Seq datasets of colon cancer patients from public database (ntumor = 457, nnormal = 41), we confirmed the reduced expression of GSTM2 and its prognostic value in colon cancer. Furthermore, we used our own Chinese cohort (ntumor = 100, nnormal = 72) verified the lower GSTM2 expression in colon cancer, and also its effects on patient prognosis. Subsequently, we uncovered two potential reasons for the lower expression of GSTM2 in colon cancer tissues, including the deep deletion of GSTM2 on genome, and the up-regulation of RAD21 or SP1. Moreover, we disclosed that GSTM2 might be involved in several immune-related pathways in colon cancer, such as chemokine signaling and leukocyte transendothelial migration. Finally, we revealed that the GSTM2 expression was closely related to the immune-related scores of colon cancer and the infiltration ratios of various immune cells, suggesting that GSTM2 might regulate the development of colon cancer by modulating immune microenvironment. In conclusion, we uncovered the prognostic value of GSTM2 based on the public data and our own data, revealed its potential regulatory role in tumor immune microenvironment, and disclosed the probable reasons for its lower expression in colon cancer. The findings of our study provide a potential prognostic biomarker and drug target for clinical diagnosis and treatment of colon cancer.

3.
J Transl Med ; 20(1): 445, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36184622

ABSTRACT

BACKGROUND: According to the Global Cancer Statistics in 2020, the incidence and mortality of colorectal cancer (CRC) rank third and second among all tumors. The disturbance of ubiquitination plays an important role in the initiation and development of CRC, but the ubiquitinome of CRC cells and the survival-relevant ubiquitination are poorly understood. METHODS: The ubiquitinome of CRC patients (n = 6) was characterized using our own data sets of proteomic and ubiquitin-proteomic examinations. Then, the probable survival-relevant ubiquitination was searched based on the analyses of data sets from public databases. RESULTS: For the ubiquitinomic examination, we identified 1690 quantifiable sites and 870 quantifiable proteins. We found that the highly-ubiquitinated proteins (n ≥ 10) were specifically involved in the biological processes such as G-protein coupling, glycoprotein coupling, and antigen presentation. Also, we depicted five motif sequences frequently recognized by ubiquitin. Subsequently, we revealed that the ubiquitination content of 1172 proteins were up-regulated and 1700 proteins were down-regulated in CRC cells versus normal adjacent cells. We demonstrated that the differentially ubiquitinated proteins were relevant to the pathways including metabolism, immune regulation, and telomere maintenance. Then, integrated with the proteomic datasets from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (n = 98), we revealed that the increased ubiquitination of FOCAD at Lys583 and Lys587 was potentially associated with patient survival. Finally, we depicted the mutation map of FOCAD and elucidated its potential functions on RNA localization and translation in CRC. CONCLUSIONS: The findings of this study described the ubiquitinome of CRC cells and identified abnormal ubiquitination(s) potentially affecting the patient survival, thereby offering new probable opportunities for clinical treatment.


Subject(s)
Colorectal Neoplasms , Ubiquitinated Proteins , Colorectal Neoplasms/pathology , Humans , Proteomics , RNA/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism , Ubiquitination
4.
iScience ; 25(8): 104750, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35942097

ABSTRACT

Ferroptosis is a type of programmed cell death potentially playing an important role in colorectal cancer (CRC) development. However, comprehensive investigations toward ferroptosis in human CRC are lacking. Here, we performed multiple investigations on cancer and para-cancer tissues. We demonstrated that the changes of structural variation and chromatin accessibility in CRC were more associated with the altered mRNA expression of ferroptosis-related genes (FRGs), and the expression of CDKN2A, GPX4, ALOXE3, and LINC00336 was related to the overall survival rates. Subsequently, we revealed that CYBB and YAP1 were potentially the hub genes, and that HSF1 and STAT2 were potentially FRGs' upstream transcription factors. Finally, we depicted the crosstalk between ferroptosis and necrosis, autophagy, and apoptosis. Based on multi-dimensional analyses, we characterized ferroptosis, probable core genes, and the upstream regulators in human CRC. The findings here may improve our understanding of ferroptosis in CRC and provide new opportunities for clinical diagnosis and treatment.

5.
Front Cell Dev Biol ; 10: 796703, 2022.
Article in English | MEDLINE | ID: mdl-35265610

ABSTRACT

Background: The disturbed molecular alterations of nucleus may promote the development of colorectal cancer (CRC). A multi-platform-based analysis of nucleus of CRC patients helps us to better understand the underlying mechanism of CRC and screen out the potential drug targets for clinical treatment. However, such studies on nucleus in human CRC are still lacking. Methods: We collected the cancerous and para-cancerous tissues from eight CRC patients and performed a multiplex analysis of the molecular changes of the nucleus, including structural variations (SVs), DNA methylation, chromatin accessibility, proteome and phosphorproteome. Results: In our study, we revealed a significant molecular change of nucleus of CRC patients using our original proteomic and phosphorylomic datasets. Subsequently, we characterized the molecular alterations of nucleus of CRC patients at multiple dimensionalities, including DNA, mRNA, protein and epigenetic modification. Next, we found that the great molecular changes of nucleus might affect the biological processes named endocytosis and ubiquitin-mediated proteolysis. Besides, we identified DYNC1LI2 and TPR as the potentially hub proteins within the network of nuclear genes in CRC cells. Furthermore, we identified 1905 CRC-specific SVs, and proclaimed 17 CRC-specific SVs were probably associated with the disturbance of immune microenvironment of CRC patients. We also revealed that the SVs of CXCL5, CXCL10 and CXCL11 might be the core SVs among all the immune-relevant SVs. Finally, we identified seven genes as the upstream transcriptional factors potentially regulating the expression of nuclear genes, such as YY1 and JUN, using a multi-omics approach. Conclusion: Here, we characterized the molecular changes of nucleus of CRC patients, disclosed the potentially core nuclear genes within the network, and identified the probable upstream regulator of nucleus. The findings of this study are helpful to understand the pathogenic molecular changes of nucleus in CRC patients and provide a functional context for drug development in future.

6.
Front Oncol ; 11: 727752, 2021.
Article in English | MEDLINE | ID: mdl-34692502

ABSTRACT

BACKGROUND: Proficient mismatch repair (pMMR) colorectal adenocarcinoma (CRAC) metastasizes to a greater extent than MMR-deficient CRAC. Prognostic biomarkers are preferred in clinical practice. However, traditional biomarkers screened directly from sequencing are often not robust and thus cannot be confidently utilized. METHODS: To circumvent the drawbacks of blind screening, we established a new strategy to identify prognostic biomarkers in the conserved and specific oncogenic pathway and its regulatory RNA network. We performed RNA sequencing (RNA-seq) for messenger RNA (mRNA) and noncoding RNA in six pMMR CRAC patients and constructed a glycosylation-related RNA regulatory network. Biomarkers were selected based on the network and their correlation with the clinicopathologic information and were validated in multiple centers (n = 775). RESULTS: We constructed a competing endogenous RNA (ceRNA) regulatory network using RNA-seq. Genes associated with glycosylation pathways were embedded within this scale-free network. Moreover, we further developed and validated a seven-glycogene prognosis signature, GlycoSig (B3GNT6, GALNT3, GALNT8, ALG8, STT3B, SRD5A3, and ALG6) that prognosticate poor-prognostic subtype for pMMR CRAC patients. This biomarker set was validated in multicenter datasets, demonstrating its robustness and wide applicability. We constructed a simple-to-use nomogram that integrated the risk score of GlycoSig and clinicopathological features of pMMR CRAC patients. CONCLUSIONS: The seven-glycogene signature served as a novel and robust prognostic biomarker set for pMMR CRAC, highlighting the role of a dysregulated glycosylation network in poor prognosis.

7.
Am J Cancer Res ; 11(6): 2893-2910, 2021.
Article in English | MEDLINE | ID: mdl-34249434

ABSTRACT

Mitochondria play leading roles in initiation and progression of colorectal cancer (CRC). Proteogenomic analyses of mitochondria of CRC tumor cells would likely enhance our understanding of CRC pathogenesis and reveal new independent prognostic factors and treatment targets. However, comprehensive investigations focused on mitochondria of CRC patients are lacking. Here, we investigated global profiles of structural variants, DNA methylation, chromatin accessibility, transcriptome, proteome, and phosphoproteome on human CRC. Proteomic investigations uncovered greatly diminished mitochondrial proteome size in CRC relative to that found in adjacent healthy tissues. Integrated with analysis of RNA-Seq datasets obtained from the public database containing mRNA data of 538 CRC patients, the proteomic analysis indicated that proteins encoded by 45.5% of identified prognostic CRC genes were located within mitochondria, highlighting the association between altered mitochondrial function and CRC. Subsequently, we compared structural variants, DNA methylation, and chromatin accessibility of differentially expressed genes and found that chromatin accessibility was an important factor underlying mitochondrial gene expression. Furthermore, phosphoproteomic profiling demonstrated decreased phosphorylation of most mitochondria-related kinases within CRC versus adjacent healthy tissues, while also highlighting MKK3/p38 as an essential mitochondrial regulatory pathway. Meanwhile, systems-based analyses revealed identities of key kinases, transcriptional factors, and their interconnections. This research uncovered a close relationship between mitochondrial dysfunction and poor CRC prognosis, improve our understanding of molecular mechanism underlying mitochondrial linked to human CRC, and facilitate identifies of clinically relevant CRC prognostic factors and drug targets.

8.
J Transl Med ; 19(1): 273, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34174878

ABSTRACT

BACKGROUND: The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS: Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS: In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS: In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.


Subject(s)
Colorectal Neoplasms , Genes, Mitochondrial , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Recurrence, Local , Prognosis
9.
J Pathol ; 252(2): 101-113, 2020 10.
Article in English | MEDLINE | ID: mdl-32617978

ABSTRACT

The histone demethylase KDM4B functions as a key co-activator for the androgen receptor (AR) and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 methylation marks. Constitutively active androgen receptor confers anti-androgen resistance in advanced prostate cancer. However, the role of KDM4B in resistance to next-generation anti-androgens and the mechanisms of KDM4B regulation are poorly defined. Here we found that KDM4B is overexpressed in enzalutamide-resistant prostate cancer cells. Overexpression of KDM4B promoted recruitment of AR to the c-Myc (MYC) gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA, which regulates the sensitivity to next-generation AR-targeted therapy. Inhibition of KDM4B significantly inhibited prostate tumor cell growth in xenografts, and improved enzalutamide treatments through suppression of c-Myc. Clinically, KDM4B expression was found upregulated and to correlate with prostate cancer progression and poor prognosis. Our results revealed a novel mechanism of anti-androgen resistance via histone demethylase alteration which could be targeted through inhibition of KDM4B to reduce AR-dependent c-Myc expression and overcome resistance to AR-targeted therapies. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma/metabolism , Drug Resistance, Neoplasm/physiology , Jumonji Domain-Containing Histone Demethylases/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Adenocarcinoma/pathology , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Humans , Male , Mice , Mice, Inbred BALB C , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-myc/metabolism
10.
BMC Cancer ; 20(1): 242, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32293320

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) ranks the third among the most common malignancies globally. It is well known that microRNAs (miRNAs) play vital roles in destabilizing mRNAs and repressing their translations in this disease. However, the mechanism of miRNA-induced mRNA cleavage remains to be investigated. METHOD: In this study, high-throughput small RNA (sRNA) sequencing was utilized to identify and profile miRNAs from six pairs of colorectal cancer tissues (CTs) and adjacent tissues (CNs). Degradome sequencing (DS) was employed to detect the cleaved target genes. The Database for Annotation, Visualization and Integrated Discovery (DAVID) software was used for GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. RESULTS: In total, 1278 known miRNAs (clustered into 337 families) and 131 novel miRNAs were characterized in the CT and CN libraries, respectively. Of those, 420 known and eight novel miRNAs were defined as differentially expressed miRNAs (DEmiRNAs) by comparing the expression levels observed in the CT and CN libraries. Furthermore, through DS, 9685 and 202 potential target transcripts were characterized as target genes for 268 known and 33 novel miRNAs, respectively. It was further predicted that a total of 264 targeted genes for the 85 DEmiRNAs are involved in proteoglycans in cancer and the AMP-activated protein kinase signaling pathway. After systemic analysis of prognosis-related miRNA targets in those cancer-related signal pathways, we found that two targets ezrin (EZR) and hematopoietic cell-specific Lyn substrate 1 (HCLS1) had the potential prognostic characteristics with CRC regarding over survival (OS) or recurrence. CONCLUSION: In total, we found that endonucleolytic miRNA-directed mRNA cleavage occurs in CRC. A number of potential genes targeted by CRC-related miRNAs were identified and some may have the potential as prognosis markers of CRC. The present findings may lead to an improved better appreciation of the novel interaction mode between miRNAs and target genes in CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , RNA, Messenger/genetics , Adult , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis
11.
Carcinogenesis ; 41(1): 56-66, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31046116

ABSTRACT

The forkhead box A1 (FOXA1), one of the forkhead class of DNA-binding proteins, functions as a transcription factor and plays a vital role in cellular control of embryonic development and cancer progression. Downregulation of FOXA1 has reported in several types of cancer, which contributes to cancer cell survival and chemoresistance. However, the mechanism for FOXA1 downregulation in cancer remains unclear. Here, we report that the ubiquitination enzyme zinc finger protein 91 (ZFP91) ubiquitinates and destabilizes FOXA1, which promotes cancer cell growth. High level of ZFP91 expression correlates with low level of FOXA1 protein in human gastric cancer (GC) cell lines and patient samples. Furthermore, ZFP91 knockdown reduces FOXA1 polyubiquitination, which decreases FOXA1 turnover and enhances cellular sensitivity to chemotherapy. Taken together, our findings reveal ZFP91-FOXA1 axis plays an important role in promoting GC progression and provides us a potential therapeutic intervention in the treatment of GC.


Subject(s)
Drug Resistance, Neoplasm/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Stomach Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Down-Regulation , Female , Gastric Mucosa/pathology , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Protein Stability , Proteolysis , RNA, Small Interfering/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Xenograft Model Antitumor Assays
12.
Future Oncol ; 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31802711

ABSTRACT

Aim: To investigate the autophagy-related gene (ATG) expression and the associated noncoding RNAs (ncRNA) and transcription factors (TF) in digestive system tumors (DST). Methods: We systematically investigated the ATG expression in DST by weighted gene correlation network analysis, crosstalk connection, functional analysis and Pivot analysis. Results: ATGs were clustered into six modules with co-expression in DST. Functional analysis revealed that six ATG-related modules were enriched in biological pathways involved in tumorigenesis. Pivot analysis identified key ncRNAs and TFs, which are essential for the pathogenesis, clinical diagnosis and treatment of DST. Conclusion: Our study highlights the crucial roles of ncRNA and TFs in the identification of potential biomarkers or therapeutic targets for DST.

13.
Cancer Biomark ; 26(3): 313-322, 2019.
Article in English | MEDLINE | ID: mdl-31561327

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) has been recognized as a promising biomarker for colorectal cancer (CRC) early diagnosis and postoperative monitoring. However, we hypothesize that the clinical value of ctDNA sequencing may differ for colon cancer (CC) and rectal cancer (RC). METHODS: Forty-three patients with primary CRC were prospectively enrolled. Tumor tissue samples, paired preoperative plasma samples and a series of postoperative plasma samples were obtained. Mutations in each sample were identified and compared. RESULTS: For 73.0% patients, at least one concordant mutation was detected in both tumor tissue DNA and paired preoperative ctDNA. The mutation concordance rate were higher in CC patients compared to RC patients (92.3% vs 45.5%; p= 0.004). For early stage patients, the mutation concordance rate was 72.7%. The recurrence rate was 33.3% for patients with postoperative ctDNA positive mutations, and 3.4% for patients with negative ctDNA (HR 10.767; 95% CI 1.1-103.8; p= 0.040). CONCLUSION: Liquid biopsy via ctDNA sequencing has great potential for the early detection and postoperative monitoring of CRC. The DNA of CC tissues is more likely to be released into blood than the DNA of RC tissues. This should be considered when diagnosing CRC patients with ctDNA sequencing technology.


Subject(s)
Biomarkers, Tumor/blood , Circulating Tumor DNA/blood , Colonic Neoplasms/diagnosis , Neoplasm Recurrence, Local/diagnosis , Rectal Neoplasms/diagnosis , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/isolation & purification , Circulating Tumor DNA/genetics , Circulating Tumor DNA/isolation & purification , Colonic Neoplasms/blood , Colonic Neoplasms/genetics , Colonic Neoplasms/surgery , DNA Mutational Analysis , Female , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy/methods , Male , Middle Aged , Mutation Rate , Neoplasm Recurrence, Local/genetics , Prognosis , Prospective Studies , Rectal Neoplasms/blood , Rectal Neoplasms/genetics , Rectal Neoplasms/surgery
14.
Cancer Sci ; 110(10): 3145-3156, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31393050

ABSTRACT

Yes-associated protein (YAP) is a component of the canonical Hippo signaling pathway that is known to play essential roles in modulating organ size, development, and tumorigenesis. Activation or upregulation of YAP1, which contributes to cancer cell survival and chemoresistance, has been verified in different types of human cancers. However, the molecular mechanism of YAP1 upregulation in cancer is still unclear. Here we report that the E3 ubiquitin ligase STUB1 ubiquitinates and destabilizes YAP1, thereby inhibiting cancer cell survival. Low levels of STUB1 expression were correlated with increased protein levels of YAP1 in human gastric cancer cell lines and patient samples. Moreover, we revealed that STUB1 ubiquitinates YAP1 at the K280 site by K48-linked polyubiquitination, which in turn increases YAP1 turnover and promotes cellular chemosensitivity. Overall, our study establishes YAP1 ubiquitination and degradation mediated by the E3 ligase STUB1 as an important regulatory mechanism in gastric cancer, and provides a rationale for potential therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Drug Resistance, Neoplasm , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Stomach Neoplasms/pathology , Ubiquitin-Protein Ligases/metabolism , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lysine/metabolism , Mice , Neoplasm Transplantation , Protein Stability , Proteolysis , Signal Transduction , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Transcription Factors , Ubiquitination , YAP-Signaling Proteins
15.
Medicine (Baltimore) ; 98(34): e16916, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31441872

ABSTRACT

BACKGROUND: Colorectal Cancer (CRC) is a highly heterogeneous disease. RNA profiles of bulk tumors have enabled transcriptional classification of CRC. However, such ways of sequencing can only target a cell colony and obscure the signatures of distinct cell populations. Alternatively, single-cell RNA sequencing (scRNA-seq), which can provide unbiased analysis of all cell types, opens the possibility to map cellular heterogeneity of CRC unbiasedly. METHODS: In this study, we utilized scRNA-seq to profile cells from cancer tissue of a CRC patient. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to understand the roles of genes within the clusters. RESULTS AND CONCLUSION: The 2824 cells were analyzed and categorized into 5 distinct clusters by scRNA-seq. For every cluster, specific cell markers can be applied, indicating each 1 of them different from another. We discovered that the tumor of CRC displayed a clear sign of heterogenicity, while genes within each cluster serve different functions. GO term analysis also stated that different cluster's relatedness towards the tumor of CRC differs. Three clusters participate in peripheral works in cells, including, energy transport, extracellular matrix generation, etc; Genes in other 2 clusters participate more in immunology processes. Lastly, trajectory plot analysis also supports the viewpoint, in that some clusters present in different states and pseudo-time, while others present in a single state or pseudo time. Our analysis provides more insight into the heterogeneity of CRC, which can provide assistance to further researches on this topic.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Genetic Heterogeneity , Sequence Analysis, RNA/methods , Aged , Biomarkers, Tumor/genetics , Female , Humans
16.
Cell Mol Biol Lett ; 24: 31, 2019.
Article in English | MEDLINE | ID: mdl-31131011

ABSTRACT

BACKGROUND: While microRNAs (miRNAs) are known to play a critical role in the progression of colorectal cancer, the role of miR-107 remains unknown. We evaluated its role and explored the underlying mechanism. MATERIALS & METHODS: MTT, wound-healing, transwell migration and transwell invasion assays were performed to evaluate the role of miR-107 in SW629 cell proliferation, migration and invasion. Real time-PCR and dual-luciferase reporter gene, TFR1 overexpression and western blotting assays were used to explore the underlying mechanism. RESULTS: MiR-107 is downregulated in colorectal cancer tissues and several human colorectal cancer cell lines. Low miR-107 expression often indicates a poor survival rate for colorectal cancer patients. MiR-107 suppresses the proliferation, migration and invasion of SW620 cells by negatively regulating transferrin receptor 1 (TFR1). CONCLUSION: MiR-107 suppresses the metastasis of colorectal cancer and could be a potential therapy target in colorectal cancer patients.


Subject(s)
Colorectal Neoplasms/genetics , Genes, Tumor Suppressor , MicroRNAs/genetics , Receptors, Transferrin/metabolism , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/metabolism , Neoplasm Invasiveness , Up-Regulation/genetics
17.
Oncol Lett ; 16(1): 239-246, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29928407

ABSTRACT

Gastric cancer (GC) is the fourth most common type of cancer and the second most common cause of cancer-associated mortality worldwide. B cell-associated autoantibodies against tumor-associated antigens are attractive biomarkers for the development of noninvasive serological tests for the early detection of cancer. This is due to their specificity and stability in the sera. In the present study multiplex polymerase chain reaction and Illumina high-throughput sequencing (HTS) was used to study the composition and variation of the B cell receptor (BCR) complimentary-determining region 3 (CDR3) in GC. The peripheral blood, cancer tissues and peri-cancer tissues were included from 7 patients with GC. On average there was a total of 403,959 CDR3 sequences, with 72,367 unique CDR3 nt sequences and 61,709 unique CDR3 aa sequences per sample identified, which are critical for further understanding the BCR repertoire in GC. The details of GC CDR3s may accelerate the screening process for possible new autoantigens and may provide additional information necessary for generating effective B cell targeted diagnosis and therapeutic strategies.

18.
Open Life Sci ; 13: 582-588, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33817129

ABSTRACT

Previous studies have suggested that Bcl2-associated athanogene 2 (BAG2) serves as a crucial regulator for tumorigenesis in multiple tumors. However, little is known about the effect of BAG2 on esophageal squamous cell carcinoma (ESCC). This study focused on investigating whether BAG2 functions as a cancer-promoting gene in ESCC. In this work, gene expression data and clinical information from the NCBI Gene Expression Omnibus (GEO), Oncomine and The Cancer Genome Atlas (TCGA) were collected and analyzed. Expression of BAG2 in ESCC was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). BAG2 was knocked down using small interference RNA (si-RNA) approach. Cell proliferation, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8) and transwell assays. Molecular mechanism was detected by western blotting assay. The expression of BAG2 both in ESCC tissues and cells was upregulated and overexpression was associated with worsened prognosis. BAG2 silencing inhibited ESCC cell proliferation, migration and invasion, which was regulated by the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT) signaling pathway. These results reveal contributions of BAG2 as a predictor and potential therapeutic target in ESCC.

19.
Int J Oncol ; 45(2): 619-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24819045

ABSTRACT

Long non-coding RNAs (lncRNAs) have been shown to play a critical role in cancer biology and are frequently aberrantly expressed. Despite their important role in pathology, little is known mechanistically regarding their role in gastric cancer (GC) pathogenesis. To characterize the role of lncRNAs in GC pathogenesis, 8 paired human GC tissue samples and matched adjacent normal tissue were examined. Large scale expression profiling of lncRNA and mRNA was performed utilizing microarray technology and validated by qPCR. Differentially expressed lncRNAs were subjected to bioinformatic analysis to predict target genes, followed by the integration of differentially expressed mRNA data and GO and network analysis to further characterize potential interactions. In our study, 2,621 lncRNAs and 3,121 mRNAs were identified to be differentially expressed (≥2.0-fold change) in GC samples relative to their matched counterparts. lncRNA target prediction revealed the presence of 221 potential lncRNA-mRNA target pairs for the 75 differentially expressed lncRNAs and 60 differentially expressed genes. KEGG pathway analysis showed that these target genes were significantly enriched in 7 different pathways, of which the p53 signaling pathway was the most significant and has been previously implicated in GC pathogenesis. Construction of a lncRNA-mRNA correlation network revealed 10 differentially expressed lncRNAs potentially regulating the p53 signaling pathway. Overall, this is the first study perform global expression profiling of lncRNAs and mRNAs relating to GC. These results may provide important information for further insights into the pathogenesis of GC and provide potential targets for future therapeutics.


Subject(s)
Adenocarcinoma/genetics , RNA, Long Noncoding/analysis , RNA, Messenger/analysis , Stomach Neoplasms/genetics , Transcriptome , Female , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...