Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Geriatr Nurs ; 56: 321-327, 2024.
Article in English | MEDLINE | ID: mdl-38422627

ABSTRACT

AIM(S): To investigate the factorial structure, test-retest reliability, and internal consistency of the Older Volunteer Competency Scale and establish its psychometric properties. DESIGN: Cross-sectional survey. METHODS: A total of 1,000 older volunteers were recruited through random sampling and asked to complete the Older Volunteer Competency Scale. Subsequently, 100 participants were selected to participate in a second test to determine the scale's test-retest reliability. Factorial structure was assessed through exploratory factor analysis and confirmatory factor analysis, and internal consistency was assessed using Cronbach's α. RESULTS: Favorable exploratory and confirmatory factor analysis results were obtained. In addition, the three dimensions of the Older Volunteer Competency Scale, namely service awareness, service skills, and interpersonal interaction, had high internal consistency and test-retest reliability. CONCLUSION: The Older Volunteer Competency Scale is an effective and reliable research instrument for evaluating competency and needs among older volunteers.


Subject(s)
Research Design , Humans , Surveys and Questionnaires , Cross-Sectional Studies , Psychometrics/methods , Reproducibility of Results
2.
Cancer Cell Int ; 24(1): 64, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336680

ABSTRACT

BACKGROUND: Esophageal cancer (EC) is a global canker notorious for causing high mortality due to its relentless incidence rate, convoluted with unyielding recurrence and metastasis. However, these intricacies of EC are associated with an immoderate expression of NY-ESO-1 antigen, presenting a lifeline for adoptive T cell therapy. We hypothesized that naturally isolated higher-affinity T cell receptors (TCRs) that bind to NY-ESO-1 would allow T lymphocytes to target EC with a pronounced antitumor response efficacy. Also, targeting TRPV2, which is associated with tumorigenesis in EC, creates an avenue for dual-targeted therapy. We exploited the dual-targeting antitumor efficacy against EC. METHODS: We isolated antigen-specific TCRs (asTCRs) from a naive library constructed with TCRs obtained from enriched cytotoxic T lymphocytes. The robustness of our asTCRs and their TCR-T cell derivatives, Tranilast (TRPV2 inhibitor), and their bivalent treatment were evaluated with prospective cross-reactive human-peptide variants and tumor cells. RESULTS: Our study demonstrated that our naive unenhanced asTCRs and their TCR-Ts perpetuated their cognate HLA-A*02:01/NY-ESO-1(157-165) specificity, killing varying EC cells with higher cytotoxicity compared to the known affinity-enhanced TCR (TCRe) and its wild-type (TCR0) which targets the same NY-ESO-1 antigen. Furthermore, the TCR-Ts and Tranilast bivalent treatment showed superior EC killing compared to any of their monovalent treatments of either TCR-T or Tranilast. CONCLUSION: Our findings suggest that dual-targeted immunotherapy may have a superior antitumor effect. Our study presents a technique to evolve novel, robust, timely therapeutic strategies and interventions for EC and other malignancies.

4.
Heliyon ; 9(11): e22035, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053850

ABSTRACT

Traumatic brain injury (TBI) is caused by acquired damage that includes cerebral edema after a mechanical injury and may cause cognitive impairment. We explored the role of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2; NOX2) and aquaporin-4 (AQP4) in the process of edema and cognitive abilities after TBI in NOX2-/- and AQP4-/- mice by using the Morris water maze test (MWM), step-down test (STD), novel object recognition test (NOR) and western blotting. Knockout of NOX2 in mice decreased the AQP4 and reduce edema in the hippocampus and cortex after TBI in mice. Moreover, inhibiting AQP4 by 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020) or genetic deletion of AQP4 could attenuate neurological deficits without changing reactive oxygen species (ROS) levels after TBI in mice. Taken together, we suspected that inhibiting NOX2 could improve cognitive abilities by modulating ROS levels, then affecting AQP4 levels and brain edema after in TBI mice. Our study demonstrated that NOX2 play a key role in decreasing edema in brain and improving cognitive abilities by modulating AQP4 after TBI.

5.
Mol Breed ; 43(12): 85, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38009098

ABSTRACT

Suitable flowering time can improve fiber yield and quality, which is of great significance for jute biological breeding. In this study, 242 jute accessions were planted in Fujian for 2 consecutive years, and 244,593 SNPs distributed in jute genome were used for genome-wide association analysis of flowering time. A total of 19 candidate intervals (P < 0.0001) were identified by using GLM and FaST-LMM and were significantly associated with flowering time, with phenotypic variation explained (PVE) ranging from 5.8 to 18.61%. Six stable intervals that were repeatedly detected in different environments were further identified by the linkage disequilibrium heatmap. The most likely 7 candidate genes involved to flowering time were further predicted according to the gene functional annotations. Notably, functional analysis of the candidate gene CcPRR7 of the major loci qFT-3-1, a key factor in circadian rhythm in the photoperiodic pathway, was evaluated by linkage, haplotype, and transgenic analysis. ß-glucuronidase (GUS) and luciferase (LUC) activity assay of the promoters with two specific haplotypes confirmed that the flowering time can be controlled by regulating the expression of CcPRR7. The model of CcPRR7 involved in the photoperiod regulation pathway under different photoperiods was proposed. These findings provide insights into genetic loci and genes for molecular marker-assisted selection in jute and valuable information for genetically engineering PRR7 homologs in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01435-8.

6.
Epigenomics ; 15(17): 845-862, 2023 09.
Article in English | MEDLINE | ID: mdl-37846550

ABSTRACT

Aim: This study aimed to investigate the transcriptomic characteristics and interactions between competitive endogenous RNAs (ceRNAs) within small extracellular vesicles (sEVs) derived from mast cells (MCs). Methods: Transcriptome sequencing analyzed lncRNA, circRNA and mRNA expression in resting and degranulated MC-derived sEVs. Constructed ceRNA regulatory network through correlation analysis and target gene prediction. Results: Differentially expressed 1673 mRNAs, 173 lncRNAs and 531 circRNAs were observed between resting and degranulated MCs-derived sEVs. Enrichment analysis revealed involvement of neurodegeneration, infection and tumor pathways. CeRNA networks included interactions between lncRNA-miRNA, circRNA-miRNA and miRNA-mRNA, targeting genes in the hippo and wnt signaling pathways linked to tumor immune regulation. Conclusion: This study provides valuable insights into MC-sEV molecular mechanisms, offering significant data resources for further investigations.


Mast cells (MCs) are important for various health conditions, including allergies, infections, tumors and brain disorders. MCs release tiny structures called small extracellular vesicles (sEVs) that carry different molecules, such as genetic material, to communicate with other cells in the body's immune system. However, we still do not know much about how these sEVs work. In this study, we examined the sEVs from MCs and found specific genetic molecules that change when MCs become activated. We discovered that these molecules are involved in important processes related to diseases like neurodegeneration and infection. We also identified networks of molecules that interact with each other, influencing immune regulation of tumor. By studying this, we gain new knowledge about how MCs use sEVs to communicate with other cells in our body during immune responses.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Circular , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mast Cells/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
7.
Front Plant Sci ; 14: 1250854, 2023.
Article in English | MEDLINE | ID: mdl-37711286

ABSTRACT

Cooking-caused rice grain expansion (CCRGE) is a critical trait for evaluating the cooking quality of rice. Previous quantitative trait locus (QTL) mapping studies on CCRGE have been limited to bi-parental populations, which restrict the exploration of natural variation and mapping resolution. To comprehensively and precisely dissect the genetic basis of CCRGE, we performed a genome-wide association study (GWAS) on three related indices: grain breadth expansion index (GBEI), grain length expansion index (GLEI), and grain length-breadth ratio expansion index (GREI), using 345 rice accessions grown in two years (environments) and 193,582 SNP markers. By analyzing each environment separately using seven different methods (3VmrMLM, mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO), we identified a total of 32, 19 and 27 reliable quantitative trait nucleotides (QTNs) associated with GBEI, GLEI and GREI, respectively. Furthermore, by jointly analyzing the two environments using 3VmrMLM, we discovered 19, 22 and 25 QTNs, as well as 9, 5 and 7 QTN-by-environment interaction (QEIs) associated with GBEI, GLEI and GREI, respectively. Notably, 12, 9 and 15 QTNs for GBEI, GLEI and GREI were found within the intervals of previously reported QTLs. In the vicinity of these QTNs or QEIs, based on analyses of mutation type, gene ontology classification, haplotype, and expression pattern, we identified five candidate genes that are related to starch synthesis and endosperm development. The five candidate genes, namely, LOC_Os04g53310 (OsSSIIIb, near QTN qGREI-4.5s), LOC_Os05g02070 (OsMT2b, near QTN qGLEI-5.1s), LOC_Os06g04200 (wx, near QEI qGBEI-6.1i and QTNs qGREI-6.1s and qGLEI-6.1t), LOC_Os06g12450 (OsSSIIa, near QTN qGLEI-6.2t), and LOC_Os08g09230 (OsSSIIIa, near QTN qGBEI-8.1t), are predicted to be involved in the process of rice grain starch synthesis and to influence grain expansion after cooking. Our findings provide valuable insights and will facilitate genetic research and improvement of CCRGE.

8.
Am J Clin Exp Immunol ; 12(4): 49-59, 2023.
Article in English | MEDLINE | ID: mdl-37736077

ABSTRACT

OBJECTIVE: Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) are closely related to multiple human autoimmune diseases, and their dysregulation is tightly linked to inflammation and disease progression. Nonetheless, little is known about the consequences of aberrant expression of lncRNAs during rheumatoid arthritis (RA) development. In this study, we screened for the expressions of lncRNAs in RA synovial fibroblasts (RA-SF) and investigated their functions in RA-SF proliferation and migration, and the relevant underlying mechanisms. METHODS: The lncRNAs expression profiles were interrogated with microarrays. The expressions of key lncRNAs were confirmed in synovial fibroblasts from RA patients and MH7A cells using qRT-PCR. Proliferations and migrations of MH7A and HFL-1 cells were evaluated using CCK-8 assay and cell migration assay kits, respectively. The expression of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and cell migration related proteins (MMP-1 and MMP-3) were evaluated using qRT-PCR and western blotting. Collagen type II-induced arthritis (CIA) in mice was used as an animal model of RA. RESULTS: Nine lncRNAs were significantly altered in RA-SF, of which lncRNA-000239 showing the most significant upregulation. Overexpression of lncRNA-000239 significantly enhanced the proliferation and migration of human RS-SF cells (MH7A), while the opposite effect was observed with lncRNA-000239 silencing. Importantly, lncRNA-000239 enhanced annexin A1 expression by upregulating the expression of miR-146a. Moreover, locally enhanced expression of lncRNA-000239 promoted the onset of arthritis in CIA. CONCLUSION: These data indicate that lncRNA-000239 upregulates annexin A1 expression via miR-146a and thus, promotes the proliferation and migration of RA-SF. This highlights a potential role of lncRNA-000239 as an inflammatory factor of RA.

9.
Eur J Pharm Sci ; 190: 106570, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634600

ABSTRACT

Allergen-specific immunotherapy (AIT) is the only curative treatment for allergic diseases. However, the long desensitization phase and potentially dangerous allergic side effects limit its broad application. Therefore, safer and more effective vaccines are required. Targeting dendritic cells (DCs) with novel allergen conjugates is a promising strategy for AIT. In this study, a novel vaccine with a DC-targeting effect for AIT was constructed. Liposomes were used as vehicles, and a targeted nanovaccine (Lex-lip-Der f 2) was constructed by loading the recombinant group 2 allergen of Dermatophagoides farinae (Der f 2) and conjugating with the DC-SIGN ligand Lewis X. The effect of the vaccine on DCs and T cell responses and the safety of the vaccine were investigated in vitro. The results showed that the Lex-lip-Der f 2 vaccine was spherical, with size of approximately 128 nm. The protein-loading capacity of the vaccine was 0.106 ± 0.001 mg per mg liposome and protein was gradually released from the liposomes during the first 12 h. Lex-lip-Der f 2 was taken up more efficiently by DCs than non-targeted liposomes or free Der f 2. Besides, Lex-lip-Der f 2 significantly inhibited the release of IL-4, IL-6, and TNF-a from DCs. Accordingly, Der f 2-lip loaded DCs significantly decreased IL-4 levels in autologous naïve CD4+T cells. Moreover, Lex-lip-Der f 2-treated basophils showed lower activation levels. These results suggest that DC-SIGN targeting mediated by Lewis X could inhibit the Th2 cell response and improve vaccine safety, and may be a novel vaccination strategy.

10.
Front Immunol ; 14: 1171380, 2023.
Article in English | MEDLINE | ID: mdl-37529050

ABSTRACT

The proliferative potential of mast cells after activation for 3-4h was found to be decreased, which suggests that mast cell degranulation and cell proliferation are differentially regulated. ELK4, a member of the ternary complex factor (TCF) subfamily of Ets transcription factors, is one of the downstream effectors of MAPK signaling that is critical for cell proliferation. And Elk4 has been identified to be vital for macrophage activation in response to zymosan and the transcriptional response to 12-O-tetrade canoyl phorbol-13-acetate (TPA) stimulation in fibroblast. However, the effect of ELK4 on the mast cell transcriptional response to FcϵRI and GPCR mediated activation and its potential functional significance in mast cells remain unclear. Here, we showed that ELK4 expression is downregulated in activated mast cells. Elk4 knockout suppresses cell proliferation and impedes the cell cycle in bone marrow-derived mast cells (BMMCs), which is associated with decreased transcription of cell cycle genes. Additionally, the transcriptional activation of cytokines and chemokines is diminished while mast cell degranulation is enhanced in Elk4 knockout BMMCs. Mechanistically, ELK4 might positively modulate Hdc, Ccl3 and Ccl4 transcription by interacting with MITF and negatively regulate the transcription of degranulation-related genes by complexing with SIRT6. Overall, our study identifies a new physiological role of the transcription factor ELK4 in mast cell proliferation and activation.


Subject(s)
Cytokines , Mast Cells , Cytokines/metabolism , Mast Cells/metabolism , Gene Expression Regulation , Chemokines/metabolism , Signal Transduction
11.
Int J Biol Sci ; 19(11): 3441-3455, 2023.
Article in English | MEDLINE | ID: mdl-37497009

ABSTRACT

Benign prostatic hyperplasia (BPH) is a condition that becomes more common with age and manifests itself primarily as the expansion of the prostate and surrounding tissues. However, to date, the etiology of BPH remains unclear. In this respect, we performed single-cell RNA sequencing of prostate transition zone tissues from elderly individuals with different prostate volumes to reveal their distinct tissue microenvironment. Ultimately, we demonstrated that a reduced Treg/CD4+ T-cell ratio in the large-volume prostate and a relatively activated immune microenvironment were present, characterized partially by increased expression levels of granzymes, which may promote vascular growth and profibrotic processes and further exacerbate BPH progression. Consistently, we observed that the prostate gland of patients taking immunosuppressive drugs usually remained at a smaller volume. Furthermore, in mouse models, we confirmed that both suppression of the immune system with rapamycin and induction of Treg proliferation with low doses of IL-2 therapy indeed prevented the progression of BPH. Taken together, our findings suggest that an activated immune microenvironment is necessary for prostate volume growth and that Tregs can reverse this immune activation state, thereby inhibiting the progression of BPH.


Subject(s)
Prostatic Hyperplasia , Humans , Male , Animals , Mice , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , Interleukin-2 , Sirolimus/pharmacology , Sirolimus/therapeutic use , Prostate/metabolism , Disease Models, Animal
12.
Nat Commun ; 14(1): 2846, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37208322

ABSTRACT

Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.


Subject(s)
Mi-2 Nucleosome Remodeling and Deacetylase Complex , Transcription Factors , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Transcription Factors/genetics , Cell Differentiation/genetics , Histone Deacetylases/genetics , Chromatin , Cellular Reprogramming/genetics
14.
Cell Res ; 33(6): 421-433, 2023 06.
Article in English | MEDLINE | ID: mdl-37085732

ABSTRACT

The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.


Subject(s)
Lung , Pulmonary Alveoli , Humans , Lung/metabolism , Cell Differentiation/genetics , Embryo, Mammalian , Sequence Analysis, RNA
15.
BMC Genomics ; 24(1): 204, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069498

ABSTRACT

BACKGROUND: Jute is considered one of the most important crops for fiber production and multipurpose usages. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a crucial enzyme involved in lignin biosynthesis in plants. The potential functions of CCoAOMT in lignin biosynthesis of jute have been reported in several studies. However, little is known about the evolution of the CCoAOMT gene family, and either their expression level at different developing stages in different jute cultivars, as well as under abiotic stresses including salt and drought stress. RESULTS: In the present study, 66 CCoAOMT genes from 12 species including 12 and eight CCoAOMTs in Corchorus olitorius and C. capsularis were identified. Phylogenetic analysis revealed that CCoAOMTs could be divided into six groups, and gene expansion was observed in C. olitorius. Furthermore, gene expression analysis of developing jute fibers was conducted at different developmental stages (15, 30, 45, 60, and 90 days after sowing [DAS]) in six varieties (Jute-179 [J179], Lubinyuanguo [LB], and Qiongyueqing [QY] for C. capsularis; Funong No.5 [F5], Kuanyechangguo [KY], and Cvlv [CL] for C. olitorius). The results showed that CCoAOMT1 and CCoAOMT2 were the dominant genes in the CCoAOMT family. Of these two dominant CCoAOMTs, CCoAOMT2 showed a constitutive expression level during the entire growth stages, while CCoAOMT1 exhibited differential expression patterns. These two genes showed higher expression levels in C. olitorius than in C. capsularis. The correlation between lignin content and CCoAOMT gene expression levels indicated that this gene family influences the lignin content of jute. Using real-time quantitative reverse transcription PCR (qRT-PCR), a substantial up-regulation of CCoAOMTs was detected in stem tissues of jute 24 h after drought treatment, with an up to 17-fold increase in expression compared to that of untreated plants. CONCLUSIONS: This study provides a basis for comprehensive genomic studies of the entire CCoAOMT gene family in C. capsularis and C. olitorius. Comparative genomics analysis among the CCoAOMT gene families of 12 species revealed the close evolutionary relationship among Corchorus, Theobroma cacao and Gossypium raimondii. This study also shows that CCoAOMTs are not only involved in lignin biosynthesis, but also are associated with the abiotic stress response in jute, and suggests the potential use of these lignin-related genes to genetically improve the fiber quality of jute.


Subject(s)
Corchorus , Methyltransferases , Corchorus/enzymology , Corchorus/genetics , Lignin/metabolism , Methyltransferases/genetics , Phylogeny
16.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430383

ABSTRACT

Roselle (Hibiscus sabdariffa L.) is an annual herbaceous plant of the genus Hibiscus in family Malvaceae. Roselle calyxes are rich in anthocyanins, which play important roles in human health. However, limited information is available on anthocyanin biosynthesis in the roselle calyx. In this study, transcriptomic and metabolomic analyses were performed to identify the key genes involved in anthocyanin biosynthesis in the roselle calyx. Three roselle cultivars with different calyx colors, including FZ-72 (red calyx, R), Baitao K (green calyx, G), and MG5 (stripped calyx, S), were used for metabolomic analyses with UPLC-Q-TOF/MS and RNA-seq. Forty-one compounds were quantified, including six flavonoids and 35 anthocyanins. The calyx of FZ-72 (red calyx) had the highest contents of anthocyanin derivatives such as delphinidin-3-O-sambubioside (955.11 µg/g) and cyanidin-3-O-sambubioside (531.37 µg/g), which were responsible for calyx color, followed by those in MG5 (stripped calyx) (851.97 and 330.06 µg/g, respectively). Baitao K (green calyx) had the lowest levels of these compounds. Furthermore, RNA-seq analysis revealed 114,415 differentially expressed genes (DEGs) in the calyxes at 30 days after flowering (DAF) for the corresponding cultivars FZ-72 (R), Baitao K (G), and MG5(S). The gene expression levels in the calyxes of the three cultivars were compared at different flowering stages, revealing 11,555, 11,949, and 7177 DEGs in R vs. G, R vs. S, and G vs. S, respectively. Phenylpropanoid and flavonoid biosynthesis pathways were found to be enriched. In the flavonoid pathway, 29, 28, and 27 genes were identified in G vs. R, G vs. S, and S vs. R, respectively. In the anthocyanin synthesis pathway, two, two, and one differential genes were identified in the three combinations; these differential genes belonged to the UFGT gene family. After joint analysis of the anthocyanin content in roselle calyxes, nine key genes belonging to the CHS, CHI, UFGT, FLS, ANR, DFR, CCoAOMT, SAT, and HST gene families were identified as strongly related to anthocyanin synthesis. These nine genes were verified using qRT-PCR, and the results were consistent with the transcriptome data. Overall, this study presents the first report on anthocyanin biosynthesis in roselle, laying a foundation for breeding roselle cultivars with high anthocyanin content.


Subject(s)
Hibiscus , Porifera , Animals , Humans , Anthocyanins , Transcriptome , Plant Breeding , Flavonoids
17.
BMC Infect Dis ; 22(1): 892, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443747

ABSTRACT

BACKGROUND: Neutrophil CD64 (nCD64) index has been widely studied as an indication of bacteria-infected diseases, but the exact usage of nCD64 index in monitoring infections remains debated. So this study aims to investigate the functionality of nCD64 index in tracking infections' progression and evaluating antibiotic therapy. METHODS: 160 participants (36 healthy controls, 34 culture-negative patients, 56 respiratory tract infected patients, and 34 bloodstream infected patients) were recruited and divided into groups. Data on nCD64 index, T lymphocyte subsets, and conventional indicators, including white blood cell count, neutrophil to lymphocyte ratio, procalcitonin, and C-reactive protein, were tested and compared. RESULTS: Bacteria-infected patients had significantly higher nCD64 indexes (p < 0.05), especially patients with both bloodstream and respiratory tract infections. The nCD64 index could identify infected patients from culture-negative patients or controls, which conventional indicators cannot achieve. We followed up with 24 infected patients and found that their nCD64 indexes were promptly down-regulated after effective antibiotic therapy (3.16 ± 3.01 vs. 1.20 ± 1.47, p < 0.001). CONCLUSION: The nCD64 index is a sensitive indicator for clinical diagnosis of bacterial infection, especially in monitoring infection and evaluating antibiotics' efficacy. Therefore, nCD64 has the potential to improve diagnostic accuracy and provide rapid feedback on monitoring disease progression in infected patients.


Subject(s)
Bacterial Infections , Neutrophils , Humans , Case-Control Studies , Bacterial Infections/diagnosis , Bacterial Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Procalcitonin
18.
Article in English | MEDLINE | ID: mdl-36279332

ABSTRACT

The task of causal discovery from observational data (X,Y) is defined as the task of deciding whether X causes Y , or Y causes X or if there is no causal relationship between X and Y . Causal discovery from observational data is an important problem in many areas of science. In this study, we propose a method to address this problem when the cause-and-effect relationship is represented by a discrete additive noise model (ANM). First, assuming that X causes Y , we estimate the conditional distributions of the noise given X using regression. Similarly, assuming that Y causes X , we also estimate the conditional distributions of noise given Y . Based on the structural characteristics of the discrete ANM, we find that the dissimilarity of the conditional distributions of noise in the causal direction is smaller than that in the anticausal direction. Then, we propose a weighted normalized Wasserstein distance to measure the dissimilarity of the conditional distributions of noise. Finally, we propose a decision rule for casual discovery by comparing two computed weighted normalized Wasserstein distances. An empirical investigation demonstrates that our method performs well on synthetic data and outperforms state-of-the-art methods on real data.

19.
Biochem Biophys Res Commun ; 617(Pt 1): 1-7, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35660876

ABSTRACT

Traumatic brain injury (TBI) is a closed or open head injury caused by external mechanical forces that induce brain damage, resulting in a wide range of postinjury dysfunctions of emotions, learning and memory, adversely affecting the quality of life of patients. In this study, we aimed to explore the possible mechanisms of NOX2 on cognitive deficits in a TBI mouse model. Behavioral tests were applied to evaluate learning and memory ability, and electrophysiological experiments were performed to measure synaptic transmission and intrinsic excitability of the CA1 pyramidal cells (PCs) and long-term potentiation (LTP) in the TBI hippocampus. We found that inhibitors of nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2; NOX2) (GSK2795039 and apocynin) attenuate neurological deficits, facilitate long-term potentiation (LTP) and decrease spontaneous synaptic transmission and intrinsic excitability of CA1 pyramidal cells (PCs) in traumatic brain injury (TBI) mice. NOX2-/- mice display reduced learning and memory impairment, enhanced LTP and reduced spontaneous synaptic transmission and intrinsic excitability of PCs after TBI. Our study demonstrates that NOX2 is a potential target for learning and memory by modulating excitability and excitatory transmission in the hippocampus after TBI.


Subject(s)
Brain Injuries, Traumatic , Quality of Life , Animals , Cognition , Hippocampus/metabolism , Humans , Mice , NADPH Oxidase 2/metabolism
20.
Nucleic Acids Res ; 50(9): 5384-5399, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35544322

ABSTRACT

Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , INDEL Mutation , Mammals/genetics , Mutation , Uracil-DNA Glycosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...