Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2470, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503754

ABSTRACT

Motivated by the recently discovered high-Tc superconductor La3Ni2O7, we comprehensively study this system using density functional theory and random phase approximation calculations. At low pressures, the Amam phase is stable, containing the Y2- mode distortion from the Fmmm phase, while the Fmmm phase is unstable. Because of small differences in enthalpy and a considerable Y2- mode amplitude, the two phases may coexist in the range between 10.6 and 14 GPa, beyond which the Fmmm phase dominates. In addition, the magnetic stripe-type spin order with wavevector (π, 0) was stable at the intermediate region. Pairing is induced in the s±-wave channel due to partial nesting between the M = (π, π) centered pockets and portions of the Fermi surface centered at the X = (π, 0) and Y = (0, π) points. This resembles results for iron-based superconductors but has a fundamental difference with iron pnictides and selenides. Moreover, our present efforts also suggest La3Ni2O7 is qualitatively different from infinite-layer nickelates and cuprate superconductors.

2.
Phys Rev Lett ; 127(7): 077204, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34459630

ABSTRACT

An insulating ferromagnetic (FM) phase exists in the quasi-one-dimensional iron oxychalcogenide Ce_{2}O_{2}FeSe_{2}, but its origin is unknown. To understand the FM mechanism, here a systematic investigation of this material is provided, analyzing the competition between ferromagnetic and antiferromagnetic tendencies and the interplay of hoppings, Coulomb interactions, Hund's coupling, and crystal-field splittings. Our intuitive analysis based on second-order perturbation theory shows that large entanglements between doubly occupied and half filled orbitals play a key role in stabilizing the FM order in Ce_{2}O_{2}FeSe_{2}. In addition, via many-body computational techniques applied to a multiorbital Hubbard model, the phase diagram confirms the proposed FM mechanism.

3.
Nat Commun ; 12(1): 3283, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078889

ABSTRACT

The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.

4.
Phys Rev Lett ; 123(6): 067601, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31491163

ABSTRACT

Within Landau theory, magnetism and polarity are homotopic, displaying a one-to-one correspondence between most physical characteristics. However, despite widely reported noncollinear magnetism, spontaneous noncollinear electric dipole order as a ground state is rare. Here, a dioxydihalides family is predicted to display noncollinear ferrielectricity, induced by competing ferroelectric and antiferroelectric soft modes. This intrinsic of dipoles generates unique physical properties, such as Z_{2}×Z_{2} topological domains, atomic-scale dipole vortices, and negative piezoelectricity.

5.
Phys Rev Lett ; 123(25): 259901, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31922775

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.123.067601.

SELECTION OF CITATIONS
SEARCH DETAIL
...