Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 333: 118485, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908490

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xuefu Zhuyu Decoction (XZD), a renowned traditional Chinese medicine prescription, is widely employed for the management of conditions characterized by qi-stagnation and blood stasis. Although its anti-thrombotic effect on deep vein thrombosis (DVT) patients has been clinically observed, the underlying mechanism remains largely unexplored. AIM OF THE STUDY: Our aim was to investigate the mechanisms by which XZD exerted its effect on DVT. MATERIALS AND METHODS: The ultra performance liquid chromatography (UPLC) technique was employed to evaluate quality of XZD. To examine the effect of XZD on DVT, a DVT rat model with inferior vena cava (IVC) stenosis was established. The 4D-label-free proteomics approach was then utilized to uncover the possible mechanisms of XZD against DVT. Based on proteomics, citrullinated histone H3 (CitH3), along with serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) were observed the inhibitory activity of XZD on neutrophil activation. Subsequently, the marker of platelet activation, specifically glycoprotein IIb (CD41) and glycoprotein IIIa (CD61), were assessed along with the secretion of von Willebrand factor (vWF) to investigate the inhibitory activity of XZD on platelet activation. Finally, we explored the impact of XZD on the sirtuin 1 (SIRT1)/nuclear factor kappa-B (NF-κB) pathway, which was associated with the activation of platelets and neutrophils. RESULTS: Eight distinct components were identified for the quality control of XZD. XZD effectively reduced thrombus weight and length in DVT rats, without affecting the coagulation function or hematological parameters in the systemic circulation. Proteomics analysis revealed that XZD alleviated DVT by inhibiting the activation of platelets and neutrophils. The protein expression of CitH3, along with serum levels of TNF-α and IL-1ß, were reduced in XZD-treated DVT rats. Similarly, protein expressions of CD41 and CD61, along with the release of vWF, were markedly down-regulated in XZD-treated DVT rats. Finally, treatment with XZD resulted in an up-regulation of SIRT1 protein expression and a down-regulation of both acetylated NF-κB/p65 and phosphorylated NF-κB/p65 protein expressions in endothelium. CONCLUSIONS: XZD alleviates DVT by inhibiting the activation of platelets and neutrophils at the injured endothelium via the regulation of SIRT1/NF-κB pathway.

2.
Int J Med Sci ; 20(11): 1386-1398, 2023.
Article in English | MEDLINE | ID: mdl-37790843

ABSTRACT

Purpose: Pen Yan Jing tablets (PYJ), a Chinese patent medicine, has being used for pelvic inflammatory disease (PID) effectively. This study was designed to explore the underlying mechanisms of PYJ for treating PID. Methods: A rat model of PID was established by mixed bacteria liquid plus mechanical damage. After PYJ treatment, the morphology of uteri and extent of pelvic adhesion were observed. The pathological changes were evaluated by hematoxylin-eosin (HE) staining. The protein expressions of CD68, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemotactic protein-1 (MCP-1) and cyclooxygenase-2 (COX-2) were quantitated by immunohistochemistry. A cell model of lipopolysaccharide (LPS)-activated RAW 264.7 macrophages was performed. The cell proliferation and NO level were measured by CCK-8 and Griess method, respectively. The tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were detected by ELISA. The protein kinase B (Akt)/nuclear factor kappa-B (NF-κB) pathway-related protein expressions were assayed by western blot or immunofluorescence. Results: PYJ alleviated pelvic adhesion and inflammatory lesions of uteri in PID rats. PYJ down-regulated protein expressions of ICAM-1, VCAM-1, MCP-1, COX-2, p-Akt, p-IκB kinaseα/ß (p-IKKα/ß), p-IκBα, p65, and p-p65 in uteri of PID rats. Moreover, PYJ medicated serum inhibited abnormal cell proliferation, NO release, levels of TNF-α and IL-6, nuclear translocation of p65, and protein expressions of p-Akt, p-p65 and p-IκBα in LPS-activated RAW 264.7 macrophages. Conclusions: Taken together, PYJ may alleviates PID through inhibiting Akt/NF-κB pathway.


Subject(s)
NF-kappa B , Pelvic Inflammatory Disease , Humans , Female , Rats , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pelvic Inflammatory Disease/drug therapy , Lipopolysaccharides/pharmacology , Interleukin-6 , Intercellular Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/pharmacology , Cyclooxygenase 2/metabolism
3.
Inflammation ; 46(5): 1887-1900, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37354359

ABSTRACT

Venous hypoxia is considered as the major pathogenetic mechanism linking blood flow stagnancy with deep vein thrombosis (DVT). Our previous study showed that activating SIRT1 may attenuate inferior vena cava (IVC) stenosis-induced DVT in rats. This study was aimed to investigate the role of endothelial SIRT1 in DVT and hypoxia-induced endothelial dysfunction as well as the underlying mechanism. Protein profiling of IVCs and blood plasma of DVT rats induced by IVC stenosis was analysed by 4D Label free proteomics analysis. To verify the independent role of SIRT1 in DVT and oxygen-glucose deprivation (OGD)-induced endothelial dysfunction, SIRT1 specific activator SRT1720 and SIRT1 knockdown in both local IVCs and endothelial cells were employed. Moreover, the role of the NF-κB were investigated using NF-κB inhibitor caffeic acid phenethyl ester (CAPE). SRT1720 significantly inhibited thrombus burden, leukocytes infiltration, protein expressions of cell adhesion molecules and chemokines, as well as acetylation level of NF-κB/p65 in wild DVT rats, while these protective effects of SRT1720 were abolished in rats with SIRT1 knockdown in local IVCs. In vitro, SRT1720 protected endothelial cells against OGD-induced dysfunction characterized with enhanced adhesion of monocytes as well as the protein expressions of cell adhesion molecules and chemokines, whereas these protective effects of SRT1720 were vanished by SIRT1 stable knockdown. Furthermore, CAPE attenuated endothelial cell dysfunction and abolished these effects of SIRT1 knockdown. Collectively, these data suggested that endothelial SIRT1 plays an independent role in ameliorating hypoxia-induced endothelial dysfunction and thrombotic inflammation in DVT, and this effect is mediated by NF-κB deacetylation.


Subject(s)
Vascular Diseases , Venous Thrombosis , Animals , Rats , Cell Adhesion Molecules , Chemokines , Constriction, Pathologic , Endothelial Cells/metabolism , Hypoxia/complications , NF-kappa B/metabolism , Sirtuin 1/metabolism , Venous Thrombosis/metabolism , Venous Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...