Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 988
Filter
1.
Angew Chem Int Ed Engl ; : e202405944, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837324

ABSTRACT

Recently, the introduction of fluorosulfonyl (-SO2F) groups have attracted considerable research interests, as this moiety could often afford enhanced activities and new functions in the context of chemical biology and drug discovery. Herein, we report the design and synthesis of 1-fluorosulfamoyl-pyridinium (FSAP) salts, which could serve as an effective photoredox-active precursor to fluorosulfamoyl radicals and enable the direct radical C-H fluorosulfonamidation of a variety of (hetero)arenes. This method features mild conditions, visible light, broad substrate scope, good group tolerance, etc., and a metal-free protocol is also viable by using organic photocatalysts. Further, FSAP can also be applied to the radical functionalization of alkenes via 1,2-difunctionalization, radical distal migration, tandem radical-polar crossover reactions, etc. In addition, a formal C-H methylamination of (hetero)arenes by combining this radical C-H fluorosulfonamidation with subsequent hydrolysis as well as product derivatization are also demonstrated.

2.
Food Chem ; 455: 139920, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38850994

ABSTRACT

This work presents a hydrothermal method followed by a sonochemical treatment for synthesizing tantalum decorated on iron selenide (Ta/FeSe2) integrated with nitrogen-doped graphene (NGR) as a susceptible electrode material for detecting trolox (TRX) in berries samples. The surface morphology, structural characterizations, and electrochemical performances of the synthesized Ta/FeSe2/NGR composite were analyzed via spectrophotometric and voltammetry techniques. The GCE modified with Ta/FeSe2/NGR demonstrated an impressive linear range of 0.1 to 580.3 µM for TRX detection. Additionally, it achieved a remarkable limit of detection (LOD) of 0.059 µM, and it shows a high sensitivity of 2.266 µA µÐœ-1 cm-2. Here, we used density functional theory (DFT) to investigate the structures of TRX and TRX quinone and the locations of energy levels and electron transfer sites. The developed sensor exhibits significant selectivity, satisfactory cyclic and storage stability, and notable reproducibility. Moreover, the practicality of TRX was assessed in different types of berries, yielding satisfactory recoveries.

3.
Front Aging Neurosci ; 16: 1364605, 2024.
Article in English | MEDLINE | ID: mdl-38711596

ABSTRACT

Objective: Ferroptosis is implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and vascular dementia, implying that it may have a regulatory effect on the progression of these diseases. However, the specific role of ferroptosis-related genes (FRGs) in Alzheimer's disease (AD) is not yet fully understood. The aim of the study was to detect ferroptosis related genes with regulatory functions in the disease and explore potential mechanisms in AD. Methods: Hub FRGs were obtained through multiple algorithms based on the GSE5281 dataset. The screening process was implemented by R packages including limma, WGCNA, glm and SVM-RFE. Gene Ontology classification and pathway enrichment analysis were performed based on FRGs. Biological processes involved with hub FRGs were investigated through GSVA and GSEA methods. Immune infiltration analysis was performed by the R package CIBERSORT. Receiver operating characteristic curve (ROC) was utilized to validate the accuracy of hub FRGs. The CeRNA network attempted to find non-coding RNA transcripts which may play a role in disease progression. Results: DDIT4, MUC1, KLHL24, CD44, and RB1 were identified as hub FRGs. As later revealed by enrichment analysis, the hub FRGs had important effects on AD through involvement in diverse AD pathogenesis-related pathways such as autophagy and glutathione metabolism. The immune microenvironment in AD shows increased numbers of resting NK cells, macrophages, and mast cells, with decreased levels of CD8 T cells when compared to healthy samples. Regulatory T cells were positively correlated with MUC1, KLHL24, and DDIT4 expression, while RB1 showed negative correlations with eosinophils and CD8 T cells, suggesting potential roles in modulating the immune environment in AD. Conclusion: Our research has identified five hub FRGs in AD. We concluded that ferroptosis may be involved in the disease.

4.
Case Rep Infect Dis ; 2024: 5361758, 2024.
Article in English | MEDLINE | ID: mdl-38784432

ABSTRACT

As a respiratory tract-transmitted disease, coronavirus disease 2019 (COVID-19) exerts a profound immune injury effect, leading not only to pulmonary impairment but also to cardiac complications. We present a case of a 79-year-old woman, who had previously contracted COVID-19 and subsequently developed sinus arrest (SA) following her second infection. The longest asystole time detected by Holter monitoring was 7.2 seconds. Although the patient met criteria for permanent pacemaker implantation, her family declined this intervention and conservative management was pursued instead. However, after a period of observation, the patient's SA resolved. The present case study describes a patient who experienced SA upon reinfection with COVID-19, which was not present during the initial infection. It emphasizes the impact of COVID-19 on cardiac health, particularly its potential to induce arrhythmias. In addition, it is worth noting that the arrhythmia induced by a COVID-19 infection may show reversibility, suggesting that a permanent pacemaker might not be the priority option if further pacing therapy is being considered.

5.
J Periodontal Res ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807492

ABSTRACT

AIMS: This study aimed to elucidate the alterations in Follistatin-like protein 1 (FSTL1) and its association with the pathological process of periodontitis. METHODS: This study included 48 patients with periodontitis and 42 healthy controls. The expression level of FSTL1 in the gingiva was determined by RT-qPCR, validated using the dataset GSE16134, and subsequently examined by western blotting. Bioinformatics analysis revealed a single-cell distribution of FSTL1, characteristic of angiogenesis and immune cell infiltration. The expression and distribution of FSTL1, vascular endothelial marker protein CD31 and myeloperoxidase (MPO), the indicator of neutrophil activity, were determined by immunohistochemistry (IHC). A series of correlation analyses was performed to determine the associations between FSTL1 and clinical parameters, including probing depth (PD) and clinical attachment loss (CAL), and their potential role in angiogenesis (CD31) and neutrophil infiltration (MPO). RESULTS: FSTL1 was significantly upregulated in the gingiva of patients with periodontitis compared to their healthy counterparts. In addition, FSTL1 was positively correlated with the clinical parameters PD (r = .5971, p = .0005) and CAL (r = .6078, p = .0004). Bioinformatic analysis and IHC indicated that high FSTL1 expression was significantly correlated with angiogenesis and neutrophil infiltration in periodontitis. Moreover, receiver operating characteristic (ROC) analysis demonstrated that FSTL1 could serve as an independent indicator for evaluating the severity of periodontitis (area under the curve [AUC] = 0.9011, p < .0001). CONCLUSION: This study demonstrated FSTL1 upregulation in periodontitis and its potential contribution to the disease via angiogenesis and neutrophil infiltration.

6.
Biomed Pharmacother ; 176: 116828, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810406

ABSTRACT

BACKGROUND: Fullerenes C60 shows great potential for drug transport. C60 generates large amounts of singlet oxygen upon photoexcitation, which has a significant inhibitory effect on tumor cells, so the photosensitive properties of C60 were exploited for photodynamic therapy of tumors by laser irradiation. METHODS: In this study, C60-NH2 was functionalized by introducing amino acids on the surface of C60, coupled with 5-FU to obtain C60 amino acid-derived drugs (C60AF, C60GF, C60LF), and activated photosensitive drugs (C60AFL, C60GFL, C60LFL) were obtained by laser irradiation. The C60 nano-photosensitive drugs were characterized in various ways, and the efficacy and safety of C60 nano-photosensitive drugs were verified by cellular experiments and animal experiments. Bioinformatics methods and cellular experiments were used to confirm the photosensitive drug targets and verify the therapeutic targets with C60AF. RESULTS: Photosensitised tumor-targeted drug delivery effectively crosses cell membranes, leads to more apoptotic cell death, and provides higher anti-tumor efficacy and safety in vitro and in vivo colorectal cancer pharmacodynamic assays compared to free 5-FU.C60 photosensitized drug promotes tumor killing by inhibiting the colorectal cancer FLOR1 tumor protein target, with no significant toxic effects on normal organs. CONCLUSION: C60 photosensitized drug delivery systems are expected to improve efficacy and reduce side effects in the future treatment of colorectal cancer. Further and better development and design of drugs and vectors for colorectal cancer therapy.

7.
J Colloid Interface Sci ; 669: 552-560, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38729003

ABSTRACT

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

8.
Environ Pollut ; 356: 124196, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788992

ABSTRACT

This study involved the synthesis of a Ce2Sn2O7/Ag3PO4/V@g-C3N4 composite through hydrothermal methods, followed by mechanical grinding. The resulting heterojunction exhibited improved catalytic activity under visible light by effectively separating electrons and holes (e-/h+). The degradation of Tartrazine (TTZ) reached 93.20% within 50 min by employing a ternary composite at a concentration of 10 mg L-1, along with 6 mg L-1 of PS. The highest pseudo-first-order kinetic constant (0.1273 min-1 and R2 = 0.951) was observed in this system. The dual Z-scheme heterojunction is developed by Ce2Sn2O7, Ag3PO4, and V@g-C3N4, and it may increase the visible light absorption range while also accelerating charge carrier transfer and separation between catalysts. The analysis of the vulnerability positions and degradation pathways of TTZ involved the utilization of density functional theory (DFT) and gas chromatography-mass spectrometry (GC-MS) to examine the intermediate products. Therefore, Ce2Sn2O7/Ag3PO4/V@g-C3N4 is an excellent ternary nanocomposite for the remediation of pollutants.

9.
Article in English | MEDLINE | ID: mdl-38740635

ABSTRACT

The microalgae industry shows a promising future in the production of high-value products such as pigments, phycoerythrin, polyunsaturated fatty acids, and polysaccharides. It was found that polysaccharides have high biomedical value (such as antiviral, antibacterial, antitumor, antioxidative) and industrial application prospects (such as antioxidants). This study aimed to improve the polysaccharides accumulation of Porphyridium purpureum CoE1, which was effectuated by inorganic salt starvation strategy whilst supplying rich carbon dioxide. At a culturing temperature of 25 °C, the highest polysaccharide content (2.89 g/L) was achieved in 50% artificial seawater on the 12th day. This accounted for approximately 37.29% of the dry biomass, signifying a 25.3% increase in polysaccharide production compared to the culture in 100% artificial seawater. Subsequently, separation, purification and characterization of polysaccharides produced were conducted. Furthermore, the assessment of CO2 fixation capacity during the cultivation of P. purpureum CoE1 was conducted in a 10 L photobioreactor. This indicated that the strain exhibited an excellent CO2 fixation capacity of 1.66 g CO2/g biomass/d. This study proposed an efficient and feasible approach that not only increasing the yield of polysaccharides by P. purpureum CoE1, but also fixing CO2 with a high rate, which showed great potential in the microalgae industry and Bio-Energy with Carbon Capture and Storage.

10.
Biochem Genet ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630357

ABSTRACT

Respiratory syncytial virus (RSV) is the most common pathogen causing acute lower respiratory tract infection in infants and children. Due to limited knowledge of the pathological and molecular mechanisms of immunodeficiency underlying RSV disease, there is currently a lack of an approved and effective RSV vaccine to combat RSV infections. This study aimed to identify genes associated with immune dysfunction using bioinformatics methods to gain insights into the role of dysregulated immune genes in RSV disease progression, and to predict potential therapeutic drugs by targeting dysregulated immune-related genes. 423 immune-related differential genes (DEIRGs) were filtered from the blood samples of 87 healthy individuals and 170 RSV patients. According to CIBERSORT analysis, the blood of RSV patients showed increased infiltration of various immune cells. Subsequently, ten immune-related hub genes were screened via Protein-Protein Interaction Networks. Six signature immune-related genes (RPS2, RPS5, RPS13, RPS14, RPS18, and RPS4X) as candidate characteristic genes for the diagnostic model were identified by Lasso regression. The AUC value of the ROC curve of the six signature genes was 0.884. This result, intriguingly, suggested that all six immune-related genes with a good internal validation effect were ribosome family genes. Finally, through molecular docking analyses targeting these differential immune genes, ADO and fluperlapine were found to have high stable binding to major proteins of important immune-related genes in nine drug-protein interactions. Overall, the present study screened immune-related genes that are dysregulated in the development of RSV disease to investigate the pathogenesis of RSV infection from the standpoint of immune disorders. Unexpectedly, bioinformatics analysis revealed that ribosome family genes may be involved in the immune dysregulation of RSV disease, and these genes as targets formed the basis for potential drug modification candidates in RSV disease.

11.
Sci Rep ; 14(1): 9954, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688992

ABSTRACT

The rising sentiment challenges of the metropolitan residents may be attributed to the extreme temperatures. However, nationwide real-time empirical studies that examine this claim are rare. In this research, we construct a daily extreme temperature index and sentiment metric using geotagged posts on one of China's largest social media sites, Weibo, to verify this hypothesis. We find that extreme temperatures causally decrease individuals' sentiment, and extremely low temperature may decrease more than extremely high temperature. Heterogeneity analyses reveal that individuals living in high levels of PM2.5, existing new COVID-19 diagnoses and low-disposable income cities on workdays are more vulnerable to the impact of extreme temperatures on sentiment. More importantly, the results also demonstrate that the adverse effects of extremely low temperatures on sentiment are more minor for people living in northern cities with breezes. Finally, we estimate that with a one-standard increase of extremely high (low) temperature, the sentiment decreases by approximately 0.161 (0.272) units. Employing social media to monitor public sentiment can assist policymakers in developing data-driven and evidence-based policies to alleviate the adverse impacts of extreme temperatures.


Subject(s)
COVID-19 , Cities , Social Media , China , Humans , COVID-19/epidemiology , COVID-19/psychology , SARS-CoV-2/isolation & purification , Public Opinion , Temperature
12.
Korean J Radiol ; 25(5): 426-437, 2024 May.
Article in English | MEDLINE | ID: mdl-38685733

ABSTRACT

OBJECTIVE: Cardiac magnetic resonance (CMR) is a diagnostic tool that provides precise and reproducible information about cardiac structure, function, and tissue characterization, aiding in the monitoring of chemotherapy response in patients with light-chain cardiac amyloidosis (AL-CA). This study aimed to evaluate the feasibility of CMR in monitoring responses to chemotherapy in patients with AL-CA. MATERIALS AND METHODS: In this prospective study, we enrolled 111 patients with AL-CA (50.5% male; median age, 54 [interquartile range, 49-63] years). Patients underwent longitudinal monitoring using biomarkers and CMR imaging. At follow-up after chemotherapy, patients were categorized into superior and inferior response groups based on their hematological and cardiac laboratory responses to chemotherapy. Changes in CMR findings across therapies and differences between response groups were analyzed. RESULTS: Following chemotherapy (before vs. after), there were significant increases in myocardial T2 (43.6 ± 3.5 ms vs. 44.6 ± 4.1 ms; P = 0.008), recovery in right ventricular (RV) longitudinal strain (median of -9.6% vs. -11.7%; P = 0.031), and decrease in RV extracellular volume fraction (ECV) (median of 53.9% vs. 51.6%; P = 0.048). These changes were more pronounced in the superior-response group. Patients with superior cardiac laboratory response showed significantly greater reductions in RV ECV (-2.9% [interquartile range, -8.7%-1.1%] vs. 1.7% [-5.5%-7.1%]; P = 0.017) and left ventricular ECV (-2.0% [-6.0%-1.3%] vs. 2.0% [-3.0%-5.0%]; P = 0.01) compared with those with inferior response. CONCLUSION: Cardiac amyloid deposition can regress following chemotherapy in patients with AL-CA, particularly showing more prominent regression, possibly earlier, in the RV. CMR emerges as an effective tool for monitoring associated tissue characteristics and ventricular functional recovery in patients with AL-CA undergoing chemotherapy, thereby supporting its utility in treatment response assessment.


Subject(s)
Cardiomyopathies , Humans , Male , Middle Aged , Female , Prospective Studies , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/drug therapy , Magnetic Resonance Imaging/methods , Feasibility Studies , Amyloidosis/diagnostic imaging , Amyloidosis/drug therapy , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Immunoglobulin Light-chain Amyloidosis/drug therapy , Treatment Outcome , Magnetic Resonance Imaging, Cine/methods , Antineoplastic Agents/therapeutic use
13.
Mol Ecol Resour ; 24(5): e13950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38567644

ABSTRACT

Lignin, as an abundant organic carbon, plays a vital role in the global carbon cycle. However, our understanding of the global lignin-degrading microbiome remains elusive. The greatest barrier has been absence of a comprehensive and accurate functional gene database. Here, we first developed a curated functional gene database (LCdb) for metagenomic profiling of lignin degrading microbial consortia. Via the LCdb, we draw a clear picture describing the global biogeography of communities with lignin-degrading potential. They exhibit clear niche differentiation at the levels of taxonomy and functional traits. The terrestrial microbiomes showed the highest diversity, yet the lowest correlations. In particular, there were few correlations between genes involved in aerobic and anaerobic degradation pathways, showing a clear functional redundancy property. In contrast, enhanced correlations, especially closer inter-connections between anaerobic and aerobic groups, were observed in aquatic consortia in response to the lower diversity. Specifically, dypB and dypA, are widespread on Earth, indicating their essential roles in lignin depolymerization. Estuarine and marine consortia featured the laccase and mnsod genes, respectively. Notably, the roles of archaea in lignin degradation were revealed in marine ecosystems. Environmental factors strongly influenced functional traits, but weakly shaped taxonomic groups. Null mode analysis further verified that composition of functional traits was deterministic, while taxonomic composition was highly stochastic, demonstrating that the environment selects functional genes rather than taxonomic groups. Our study not only develops a useful tool to study lignin degrading microbial communities via metagenome sequencing but also advances our understanding of ecological traits of these global microbiomes.


Subject(s)
Ecosystem , Lignin , Metagenomics , Microbiota , Lignin/metabolism , Microbiota/genetics , Microbiota/physiology , Metagenomics/methods , Archaea/genetics , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbial Consortia/genetics , Microbial Consortia/physiology , Metagenome
14.
J Biomater Appl ; 39(1): 40-47, 2024 07.
Article in English | MEDLINE | ID: mdl-38641897

ABSTRACT

Foam dressing (FD) and micropower vacuum dressing (MVD) have been applied in the treatment of diabetic foot ulcer (DFU). However, research about the mode of action on the efficacy of the two dressings is extremely rare. This study proposed to explore the mechanism involved in diabetic wound healing under FD or MVD treatment. Macroscopical study was performed to evaluate the effectiveness of FD and MVD on wound healing in a rat model of DFU. Morphological analysis in the wound skin tissue was conducted by hematoxylin and eosin staining. Meanwhile, inflammatory cytokines in serum were measured by enzyme linked immunosorbent assay. The protein expression of phosphatidylinositol 3 kinase, protein kinase B and mammalian target of rapamycin (PI3K/AKT/mTOR) and their phosphorylation levels were determined by western blotting. We found that wound healing in rats with DFU was enhanced with the application of FD and MVD. The therapeutic efficacy of FD was superior to MVD. Compared with diabetic foot group, the concentrations of inflammatory cytokines, tumor necrosis factor alpha, interleukin-1ß and interleukin-6, were significantly down-regulated. Besides, the phosphorylation levels of PI3K, AKT and mTOR were up-regulated under FD or MVD treatment. We demonstrated that the treatment of FD and MVD effectively promoted the wound skin healing through activating the PI3K/AKT/mTOR pathway. Our research may provide a new idea for exploring the mode of action of dressing application in healing of DFU.


Subject(s)
Bandages , Diabetic Foot , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Wound Healing , Animals , TOR Serine-Threonine Kinases/metabolism , Diabetic Foot/therapy , Diabetic Foot/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Male , Phosphatidylinositol 3-Kinases/metabolism , Cytokines/metabolism , Vacuum
15.
BMC Oral Health ; 24(1): 465, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627713

ABSTRACT

BACKGROUND: Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS: Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS: Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS: This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.


Subject(s)
Pulpitis , Humans , Ion Channels/genetics , Ion Channels/metabolism , Inflammation , Pain , RNA, Messenger
16.
Trends Biotechnol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594144

ABSTRACT

Omega fatty acids are important for human health. They are traditionally extracted from animals or plants but can be alternatively produced using oleaginous yeast. Current efforts are producing yeast strains with similar fatty acid distributions and powerful lipogenesis capacity. The next step is to further make the process more competitive.

17.
BMC Public Health ; 24(1): 723, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448849

ABSTRACT

BACKGROUND: Deep learning (DL), a specialized form of machine learning (ML), is valuable for forecasting survival in various diseases. Its clinical applicability in real-world patients with gastric cancer (GC) has yet to be extensively validated. METHODS: A combined cohort of 11,414 GC patients from the Surveillance, Epidemiology and End Results (SEER) database and 2,846 patients from a Chinese dataset were utilized. The internal validation of different algorithms, including DL model, traditional ML models, and American Joint Committee on Cancer (AJCC) stage model, was conducted by training and testing sets on the SEER database, followed by external validation on the Chinese dataset. The performance of the algorithms was assessed using the area under the receiver operating characteristic curve, decision curve, and calibration curve. RESULTS: DL model demonstrated superior performance in terms of the area under the curve (AUC) at 1, 3, and, 5 years post-surgery across both datasets, surpassing other ML models and AJCC stage model, with AUCs of 0.77, 0.80, and 0.82 in the SEER dataset and 0.77, 0.76, and 0.75 in the Chinese dataset, respectively. Furthermore, decision curve analysis revealed that the DL model yielded greater net gains at 3 years than other ML models and AJCC stage model, and calibration plots at 3 years indicated a favorable level of consistency between the ML and actual observations during external validation. CONCLUSIONS: DL-based model was established to accurately predict the survival rate of postoperative patients with GC.


Subject(s)
Deep Learning , Stomach Neoplasms , Humans , Algorithms , Area Under Curve , Asian People , Stomach Neoplasms/surgery , North American People
18.
Phys Rev E ; 109(2-1): 024129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491675

ABSTRACT

In this article, we find that impurity in a one-dimensional harmonic chain leads to spikes in the phonon transmission. Using the Langevin equations and Green's function method (LEGF), we find the underlying mechanism of spikes, which comes from the fact that the wave energy can be transferred through uniform subchains laid between impurities without loss. Both the position and magnitude of spikes can be analytically obtained. By employing these results, we provide an analytical approach to transmission in the thermodynamic limit, thereby compensating for the limitation of LEGF that are practically confined to finite system size. Finally, we determine an expression for the localization length based on LEGF, demonstrating the equivalence between mass disorder and spatial disorder in low impurity concentration.

19.
Chemosphere ; 355: 141744, 2024 May.
Article in English | MEDLINE | ID: mdl-38522669

ABSTRACT

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Subject(s)
Benzimidazoles , Bismuth , Carbamates , Carbon , Nanofibers , Selenium Compounds , Carbon/chemistry , Nanofibers/chemistry , Ecosystem , Water , Electrochemical Techniques/methods , Electrodes
20.
BMC Oral Health ; 24(1): 360, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515079

ABSTRACT

BACKGROUND: Entirely impacted mandibular third molar (EIM3M) concerns the pathological external root resorption (ERR) of the adjacent mandibular second molar (M2M) and formation of granulation tissue between two molars. The study aimed to clarify the effect of αENaC, a mechano-sensitive molecule, to explore the mechanical mechanism in this scenario. METHODS: The force EIM3M exerted on M2M was proved by finite element analysis. αENaC expressions were tested by real-time polymerase chain reaction (PCR), immunoblotting and immunofluorescence. Inflammatory and epithelial-mesenchymal transition (EMT)-related molecules expressions were also detected by real-time PCR. The correlation was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curve was further exhibited. RESULTS: The force was concentrated in the ERR area. αENaC was upregulated, positively correlated with ERR degree and localized to the fibroblasts in ERR granulation tissues. Moreover, αENaC was respectively and positively associated with elevated TNF-α and N-cadherin in ERR granulation tissues. More importantly, ROC analysis verified αENaC as a novel indication of the incidence of this disease. CONCLUSIONS: Our finding revealed the force from EIM3M causing ERR of M2M, and elucidated the expression and localization of αENaC and its positive correlation with inflammation, EMT and disease severity, suggesting a novel indication in this disease.


Subject(s)
Root Resorption , Tooth, Impacted , Humans , Root Resorption/etiology , Molar, Third , Cone-Beam Computed Tomography , Molar
SELECTION OF CITATIONS
SEARCH DETAIL
...