Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 30(15): 2388-401, 2009 Nov 30.
Article in English | MEDLINE | ID: mdl-19353598

ABSTRACT

Combined QM(PM3)/MM molecular dynamics simulations together with QM(DFT)/MM optimizations for key configurations have been performed to elucidate the enzymatic catalysis mechanism on the detoxification of paraoxon by phosphotriesterase (PTE). In the simulations, the PM3 parameters for the phosphorous atom were reoptimized. The equilibrated configuration of the enzyme/substrate complex showed that paraoxon can strongly bind to the more solvent-exposed metal ion Zn(beta), but the free energy profile along the binding path demonstrated that the binding is thermodynamically unfavorable. This explains why the crystal structures of PTE with substrate analogues often exhibit long distances between the phosphoral oxygen and Zn(beta). The subsequent SN2 reaction plays the key role in the whole process, but controversies exist over the identity of the nucleophilic species, which could be either a hydroxide ion terminally coordinated to Zn(alpha) or the micro-hydroxo bridge between the alpha- and beta-metals. Our simulations supported the latter and showed that the rate-limiting step is the distortion of the bound paraoxon to approach the bridging hydroxide. After this preparation step, the bridging hydroxide ion attacks the phosphorous center and replaces the diethyl phosphate with a low barrier. Thus, a plausible way to engineer PTE with enhanced catalytic activity is to stabilize the deformed paraoxon. Conformational analyses indicate that Trp131 is the closest residue to the phosphoryl oxygen, and mutations to Arg or Gln or even Lys, which can shorten the hydrogen bond distance with the phosphoryl oxygen, could potentially lead to a mutant with enhanced activity for the detoxification of organophosphates.


Subject(s)
Computer Simulation , Models, Chemical , Paraoxon/chemistry , Phosphoric Triester Hydrolases/metabolism , Catalysis , Hydrolysis , Phosphoric Triester Hydrolases/chemistry
2.
Org Biomol Chem ; 4(4): 624-30, 2006 Feb 21.
Article in English | MEDLINE | ID: mdl-16467936

ABSTRACT

A series of N-(p-dimethylaminobenzamido)-N'-(substituted-phenyl)thioureas (substituent = p-CH3, H, p-Cl, p-Br, m-Br, m-NO2, and p-NO2) were designed as anion sensors in order to better understand the -NH-spacer via a substituent effect investigation. In these molecules the dual fluorescent intramolecular charge transfer (ICT) fluorophore p-dimethylaminobenzamide as the signal reporter was linked to the anion-binding site, the thiourea moiety, via an N-N single bond. Correlation of the NMR signals of the aromatic and -NH protons with substituents in these molecules indicated that the N-N single bond stopped the ground-state electronic communication between the signal reporter and the anion-binding site. Dual fluorescence was observed in highly polar solvents such as acetonitrile with the former five derivatives. The fact that the CT emission wavelength and the CT to LE emission intensity ratio of the sensors were independent of the substituent existing in the anion-binding moiety suggested that the substituent electronic effect could not be communicated to the CT fluorophore in the excited-state either. Yet in acetonitrile both the CT dual fluorescence and the absorption of the sensors were found to be highly sensitive toward anions. A conformation change around the N-N bond in the sensor molecules was suggested to occur upon anion binding that established the electronic communication between the signal reporter and the anion-binding site. The anion binding constants of the N-(p-dimethylaminobenzamido)thiourea sensors were found higher than those of the corresponding traditional N-phenylthiourea counterparts and the substituent effect on the anion binding constant was much higher than that in the latter. "-NH-" was shown to be a unique spacer that affords N-benzamidothiourea allosteric anion sensors.


Subject(s)
Hydrogen/chemistry , Nitrogen/chemistry , Thiourea/analogs & derivatives , Thiourea/chemistry , Amination , Anions/chemistry , Fluorescence , Hydrogen Bonding , Methylation , Molecular Structure , Spectrum Analysis , Titrimetry
3.
J Chem Phys ; 123(6): 64315, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16122316

ABSTRACT

Equilibrium geometries and electronic properties of binary transition-metal clusters, (NbCo)n (n < or = 5), have been investigated by means of the relativistic density-functional approach. The metal-metal bonding and stability aspects of these clusters have been analyzed on the basis of calculations. Present results show that these clusters exhibit rich structural varieties on the potential-energy surfaces. The most stable structures have a compact conformation in relatively high symmetry, in which the Nb atoms prefer to form an inner core and Co atoms are capped to the facets of the core. Such building features in clustering of the Nb/Co system are related to the order of bond strength: Nb-Nb>Nb-Co>Co-Co. As the binary cluster size increases, the Nb-Co bond may become stronger than the Nb-Nb bond in the inner niobium core, which results in a remarkable increment of the Nb-Nb bond length. Amongst these binary transition-metal clusters, the singlet (NbCo)4 in T(d) symmetry has a striking high stability due to the presence of the spherical aromaticity and electronic shell closure. The size dependence of the bond length and stability of the cluster has been explored.

SELECTION OF CITATIONS
SEARCH DETAIL
...