Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 343: 123287, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171426

ABSTRACT

This study reported a new strategy for enhanced Pb2+ and Cu2+ sequestration by Artemia cyst shell (shell) supported nano-Mg from aqueous solutions and the carbonated exhausted-adsorbents sequenced potential application in photo-catalyst, which obtained two expected results. One is that the immobilization of nano-Mg onto Artemia cyst shell (shell-Mg) can greatly strengthen the adsorption effect of the neat cyst shell on Pb2+ and Cu2+. The adsorption capacities of shell-Mg for both metal ions reached to 622.01 and 313.91 mg/g, which was 10-15 and 30-50 times that of the neat shell respectively. And shell-Mg has strong selectivity, which was approximately 2-4 times that of shell. The shell-Mg can be used to retrieve Pb2+ and Cu2+ from aqueous solutions efficiently. Another is that the carbonated exhausted-adsorbents (C-shell-Mg-Pb and C-shell-Mg-Cu) showed their potential photocatalytic degradation effects on congo red under pH = 4 condition, the decolorization rate reached to 61.19% and 80.39% respectively. Reuse of exhausted adsorbents can avoid the secondary pollution caused by the regeneration, extend the utilization value of exhausted adsorbents, and provide a new viewpoint for the reuse of spent bio-nanomaterial adsorbents.


Subject(s)
Nanostructures , Water Pollutants, Chemical , Animals , Artemia , Lead , Water Pollutants, Chemical/analysis , Congo Red , Adsorption , Hydrogen-Ion Concentration , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...