Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.091
Filter
1.
J Leukoc Biol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833591

ABSTRACT

Loss and overexpression of FAT1 occurs among different cancers with these divergent states equated with tumor suppressor and oncogene activity, respectively. Regarding the latter, FAT1 is highly expressed in a high proportion of human acute leukemias relative to normal blood cells, with evidence pointing to an oncogenic role. We hypothesized that this occurrence represents legacy expression of FAT1 in undefined hematopoietic precursor subsets that is sustained following transformation, predicating a role for FAT1 during normal hematopoiesis. We explored this concept by using the Vav-iCre strain to construct conditional knockout (cKO) mice where Fat1 expression was deleted at the hematopoietic stem cell stage. Extensive analysis of precursor and mature blood populations using multi-panel flow cytometry revealed no ostensible differences between Fat1 cKO mice and normal littermates. Further functional comparisons involving colony forming unit and competitive bone marrow transplantation assays support the conclusion that Fat1 is dispensable for normal murine hematopoiesis.

2.
Food Res Int ; 183: 114190, 2024 May.
Article in English | MEDLINE | ID: mdl-38760127

ABSTRACT

This study aimed to determine the effect of different frozen temperatures during storage on the quality of Antarctic krill (Euphausia superba) and assess the change at the metabolite level via a combination of physicochemical property analysis, liquid chromatography-tandem mass spectrometry (LC-MS) based non-targeted metabolomics profiling. Regarding samples stored at -20 °C, the expressions of 7055 metabolites were elevated, while 2313 were downregulated. Lipids and lipid molecules had the highest proportion of differential metabolites. A total of 432 discriminatory metabolites with Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs was obtained. We also observed that the concentrations of differential bitter free amino acids (FAAs) and oxidation products of arachidonic and linoleic acid increased. Moreover, as the storage temperature increased, the freshness, umami, and sweetness components were considerably reduced. Furthermore, results indicated that the color, pH and water-holding capacity (WHC) were potential indicators of quality deterioration, while inosinic acid was a probable biomarker for umami degradation of frozen Antarctic krill. In conclusion, this study demonstrates that storage at lower temperatures can be beneficial for maintaining the freshness of Antarctic krill from macro and micro perspectives.


Subject(s)
Euphausiacea , Freezing , Metabolomics , Tandem Mass Spectrometry , Animals , Euphausiacea/chemistry , Antarctic Regions , Food Storage/methods , Taste , Hydrogen-Ion Concentration , Seafood/analysis , Chromatography, Liquid
3.
J Adv Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750694

ABSTRACT

BACKGROUND: Autophagy is an evolutionarily conserved turnover process for intracellular substances in eukaryotes, relying on lysosomal (in animals) or vacuolar (in yeast and plants) mechanisms. In the past two decades, emerging evidence suggests that, under specific conditions, autophagy can target particular macromolecules or organelles for degradation, a process termed selective autophagy. Recently, accumulating studies have demonstrated that the abnormality of selective autophagy is closely associated with the occurrence and progression of many human diseases, including neurodegenerative diseases, cancers, metabolic diseases, and cardiovascular diseases. AIM OF REVIEW: This review aims at systematically and comprehensively introducing selective autophagy and its role in various diseases, while unravelling the molecular mechanisms of selective autophagy. By providing a theoretical basis for the development of related small-molecule drugs as well as treating related human diseases, this review seeks to contribute to the understanding of selective autophagy and its therapeutic potential. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this review, we systematically introduce and dissect the major categories of selective autophagy that have been discovered. We also focus on recent advances in understanding the molecular mechanisms underlying both classical and non-classical selective autophagy. Moreover, the current situation of small-molecule drugs targeting different types of selective autophagy is further summarized, providing valuable insights into the discovery of more candidate small-molecule drugs targeting selective autophagy in the future. On the other hand, we also reveal clinically relevant implementations that are potentially related to selective autophagy, such as predictive approaches and treatments tailored to individual patients.

4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2037-2041, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812220

ABSTRACT

Uterine fibroids are a prevalent factor that impacts fertility in women of reproductive age. This study discusses the theoretical foundation and formula principles of Professor MA Kun's clinical treatment for infertility caused by uterine fibroids. The kidney stores essence and is responsible for reproduction, while blood serves as a vital material basis for women's physiological functions. Kidney deficiency is the fundamental pathogenesis of infertility, and imbalances in kidney Qi and essence or deficiencies in kidney Yin and Yang can result in blood stasis. Blood stasis plays a significant role throughout this condition by impeding the flow of blood, which is crucial for nourishing Qi. Therefore, both kidney deficiency and blood stasis are key factors contributing to infertility caused by uterine fibroids. Professor MA Kun treats infertility caused by uterine fibroids using an approach that involves tonifying the kidneys and activating blood circulation based on changes in Qi and blood during the menstrual cycle as well as follicular growth processes. By identifying stage-specific evidence, appropriate treatments can be applied accordingly. During menstruation when the uterus opens and menstrual blood flows out, promoting follicular development through nourishing kidney Yin and activating blood circulation becomes essential. In later stages of menstruation, additional measures are taken to remove blood stasis, alleviate symptoms, disperse knots, attack pathogens while simultaneously replenishing vital energy. During intermenstrual periods when Yin holds greater importance than Yang, tonifying the kidneys and activating blood circulation helps facilitate smooth discharge of eggs by promoting transformation between Yin and Yang energies. Premenstrual period to warm kidney Yang to promote pregnant egg implantation, and at the same time to dredge the liver and regulate Qi, Qi elimination stagnation, complementary in the line, with the symptoms of additional subtractions. Clinical effect is remarkable, for the reference of colleagues.


Subject(s)
Drugs, Chinese Herbal , Infertility, Female , Kidney , Leiomyoma , Humans , Female , Kidney/physiopathology , Infertility, Female/etiology , Infertility, Female/therapy , Infertility, Female/physiopathology , Drugs, Chinese Herbal/therapeutic use
5.
Pharmacol Ther ; 259: 108656, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735486

ABSTRACT

In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.

6.
World J Clin Cases ; 12(13): 2173-2181, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38808336

ABSTRACT

BACKGROUND: Multidrug-resistant Gram-negative bacteria, exacerbated by excessive use of antimicrobials and immunosuppressants, are a major health threat. AIM: To study the clinical efficacy and safety of colistin sulfate in the treatment of carbapenem-resistant Gram-negative bacilli-induced pneumonia, and to provide theoretical reference for clinical diagnosis and treatment. METHODS: This retrospective analysis involved 54 patients with Gram-negative bacilli pneumonia admitted to intensive care unit of The General Hospital of the Northern Theater Command of the People's Liberation Army of China from August 2020 to June 2022. After bacteriological culture, the patients' airway secretions were collected to confirm the presence of Gram-negative bacilli. The patients were divided into the experimental and control groups according to the medication used. The research group consisted of 28 patients who received polymyxin sulfate combined with other drugs through intravenous, nebulization, or intravenous combined with nebulization, with a daily dosage of 1.5-3.0 million units. The control group consisted of 26 patients who received standard dosages of other antibiotics (including sulbactam sodium for injection, cefoperazone sodium sulbactam for injection, tigecycline, meropenem, or vaborbactam). RESULTS: Of the 28 patients included in the research group, 26 patients showed improvement, treatment was ineffective for two patients, and one patient died, with the treatment efficacy rate of 92.82%. Of the 26 patients in the control group, 18 patients improved, treatment was ineffective for eight patients, and two patients died, with the treatment efficacy rate of 54.9%; significant difference was observed between the two groups (P < 0.05). The levels of white blood cell (WBC), procalcitonin (PCT), and C-reactive protein (CRP) in both groups were significantly lower after treatment than before treatment (P < 0.05), and the levels of WBC, PCT, and CRP in the research group were significantly lower than those in the control group (P < 0.05). Compared with before treatment, there were no significant changes in aspartate aminotransferase, creatinine, and glomerular filtration rate in both groups, while total bilirubin and alanine aminotransferase decreased after treatment (P < 0.05) with no difference between the groups. In patients with good clinical outcomes, the sequential organ failure assessment (SOFA) score was low when treated with inhaled polymyxin sulfate, and specific antibiotic treatment did not improve the outcome. Sepsis and septic shock as well as a low SOFA score were independent factors associated with good clinical outcomes. CONCLUSION: Polymyxin sulfate has a significant effect on the treatment of patients with multiple drug-resistant Gram-negative bacilli pneumonia and other infections in the lungs and is safe and reliable. Moreover, the administration route of low-dose intravenous injection combined with nebulization shows better therapeutic effects and lower adverse reactions, providing new ideas for clinical administration.

7.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812132

ABSTRACT

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Subject(s)
Brain Ischemia , Doublecortin Protein , NF-E2-Related Factor 2 , Neural Stem Cells , Pyrazines , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Pyrazines/pharmacology , Neural Stem Cells/drug effects , Neural Stem Cells/transplantation , Neural Stem Cells/metabolism , Rats , Male , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Brain Ischemia/therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Stem Cell Transplantation/methods , Cell Proliferation/drug effects , Cell Movement/drug effects , Humans , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Infarction, Middle Cerebral Artery/therapy , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2308-2315, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812131

ABSTRACT

This study aims to decipher the mechanism of tetramethylpyrazine(TMP) in regulating the migration of neural stem cells(NSCs) in the rat model of middle cerebral artery occlusion(MCAO) via the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase 1(HO-1)/C-X-C motif chemokine receptor 4(CXCR4) pathway. SD rats were randomized into sham, MCAO(model), and tetramethylpyrazine(TMP, 20 mg·kg~(-1) and 40 mg·kg~(-1)) groups. The neurological impairment was assessed by the modified neurological severity score(mNSS). The immunofluorescence assay was employed to detect the cells stained with both 5-bromodeoxyuridine(BrdU) and doublecortin(DCX) in the brain tissue. The effect of TMP on the migration of C17.2 cells was observed. Western blot was employed to determine the protein levels of Nrf2, HO-1, p62, NAD(P)H quinone oxidoreductase 1(NQO1), stromal cell-derived factor 1(SDF-1), and CXCR4 in the brain tissue and C17.2 cells. The results showed that after 7 days and 21 days of mode-ling, the mNSS and BrdU~+/DCX~+ cells were increased, and the expression of Nrf2 and CXCR4 in the brain tissue was up-regulated. Compared with the model group, TMP(40 mg·kg~(-1)) reduced the mNSS, increased the number of BrdU~+/DCX~+ cells, and up-regulated the expression of Nrf2, CXCR4, and SDF-1. In addition, TMP promoted the migration of C17.2 cells and up-regulated the expression of p62, Nrf2, HO-1, and NQO1 in a time-and dose-dependent manner. The expression was the highest at the time point of 12 h in the TMP(50 µg·mL~(-1)) group(P<0.01). In conclusion, TMP activates the Nrf2/HO-1/CXCR4 pathway to promote the migration of NSCs to the ischemic area, thus exerting the therapeutic effect on the ischemia-reperfusion injury. This study provides experimental support for the application of TMP in ischemic stroke.


Subject(s)
Cell Movement , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Neural Stem Cells , Pyrazines , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Pyrazines/pharmacology , Rats , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Movement/drug effects , Male , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Doublecortin Protein , Signal Transduction/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Humans
9.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2336-2344, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812134

ABSTRACT

This study aims to optimize the conditions for the formation of neutrophil extracellular traps(NETs) in vitro, so as to establish a relatively stable experimental research platform. Different conditions were compared, including commonly used laboratory animals(rats and mice) and a variety of cell sources(bone marrow neutrophils and peripheral blood neutrophils separated by percoll density gradient centrifugation). Different inducers like lipopolysaccharide(LPS) and phorbol 12-myristate 13-acetate(PMA) were used for induction in vitro. Myeloperoxidase(MPO)/citrullinated histone H3(CitH3)/DAPI immunofluorescence and cell free DNA(cf-DNA) content determination were used for comprehensive evaluation to screen the optimal conditions for the formation of NETs induced in vitro. Furthermore, the stability of the selected conditions for inducing the formation of NETs in vitro was evaluated by tetramethylpyrazine(TMP), an active component in Chinese herbal medicines. The results showed that coated poly-D-lysine(PDL) induced the formation of NETs in bone marrow neutrophils of mice to a certain extent. Both LPS and PMA significantly up-regulated the protein levels of MPO and CitH3 in mouse bone marrow neutrophils and elevated the cfDNA level in the supernatant of rat peripheral blood neutrophils. The cfDNA level in the PMA-induced group increased more significantly than that in the LPS-induced group(P<0.05). The results of immunofluorescence staining showed that the expression of MPO and CitH3 in mouse bone marrow neutrophils, rat bone marrow neutrophils, and rat peripheral blood neutrophils were significantly increased after PMA induction, especially in rat peripheral blood neutrophils. TMP significantly down-regulated the protein levels of MPO, CitH3, and neutrophil elastase(NE) in rat peripheral blood neutrophils induced by PMA. In conclusion, treating the peripheral blood neutrophils of rats with PMA is the optimal condition for inducing the formation of NETs in vitro. This study provides an optimal platform for in vitro studies based on NETs and a basis for studying the effects of traditional Chinese medicines targeting NETs.


Subject(s)
Extracellular Traps , Neutrophils , Peroxidase , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Animals , Neutrophils/drug effects , Neutrophils/cytology , Mice , Rats , Peroxidase/metabolism , Peroxidase/genetics , Tetradecanoylphorbol Acetate/pharmacology , Male , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley , Histones/metabolism , Histones/genetics , Humans
10.
Phytomedicine ; 129: 155681, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718638

ABSTRACT

BACKGROUND: Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE: Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS: We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS: The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION: C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Animals , Female , Humans , Male , Cistanche/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Glucosides/pharmacology , Glucosides/therapeutic use , Glycosides , Infertility/drug therapy , Oxidative Stress/drug effects , Phenols/pharmacology , Phenols/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Polyphenols , Reproduction/drug effects
11.
Sci Rep ; 14(1): 12283, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811828

ABSTRACT

Endoplasmic reticulum stress (ERS) is commonly induced by accumulating misfolded or unfolded proteins in tumor microenvironment. Long non-coding RNAs (lncRNAs) play important roles in ERS response and lung adenocarcinoma (LUAD) progression. However, the role of ERS-related lncRNAs in LUAD remains unknown. In this study, we aimed to identify ERS-associated lncRNAs with prognostic value in LUAD and characterize their clinical implications. Cox and least absolute shrinkage and selection operator regression analyses identified nine ERS-related lncRNAs with independent prognostic abilities, including five protective factors (CROCCP2, KIAA0125, LINC0996, RPARP-AS1 and TBX5-AS1) and four risk factors (LINC0857, LINC116, RP11-21L23.2 and RP11-295G20.2). We developed an ERS-related lncRNA risk prediction model in predicting overall survival of LUAD patients, which classified TCGA cohorts into high-risk (HS) and low-risk (LS) groups. Comprehensive bioinformatic analyses revealed HS patients featured with late-stage tumors, greater mutation burdens, weaker anti-tumor immunity/responses, and lower sensitivity to targeted drugs compared to LS patients, contributing to tumor progression and a poor prognosis. Functional enrichment analysis implicated these ERS-related lncRNAs in cell migration, cell death, and immunity. Furthermore, expression of the most significantly upregulated risk lncRNA, RP11-295G20.2, was validated at the mRNA level using clinical LUAD samples. Knockdown of RP11-295G20.2 obviously reduced ERS and suppressed proliferation, invasion, and migration of LUAD cells. This novel ERS-related lncRNA signature provides a new biomarker for prognostic prediction, and ERS-associated RP11-295G20.2 serves as a potential therapeutic target in LUAD.


Subject(s)
Adenocarcinoma of Lung , Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Lung Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Endoplasmic Reticulum Stress/genetics , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Male , Female , Biomarkers, Tumor/genetics , Gene Knockdown Techniques , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Middle Aged
12.
Birth Defects Res ; 116(5): e2351, 2024 May.
Article in English | MEDLINE | ID: mdl-38766695

ABSTRACT

BACKGROUND: Pathogenic copy number variants (pCNVs) are associated with fetal ultrasound anomalies, which can be efficiently identified through chromosomal microarray analysis (CMA). The primary objective of the present study was to enhance understanding of the genotype-phenotype correlation in fetuses exhibiting absent or hypoplastic nasal bones using CMA. METHODS: Enrolled in the present study were 94 cases of fetuses with absent/hypoplastic nasal bone, which were divided into an isolated absent/hypoplastic nasal bone group (n = 49) and a non-isolated group (n = 45). All pregnant women enrolled in the study underwent karyotype analysis and CMA to assess chromosomal abnormalities in the fetuses. RESULTS: Karyotype analysis and CMA detection were successfully performed in all cases. The results of karyotype and CMA indicate the presence of 11 cases of chromosome aneuploidy, with trisomy 21 being the most prevalent among them. A small supernumerary marker chromosome (sSMC) detected by karyotype analysis was further interpreted as a pCNV by CMA. Additionally, CMA detection elicited three cases of pCNVs, despite normal findings in their karyotype analysis results. Among them, one case of Roche translocation was identified to be a UPD in chromosome 15 with a low proportion of trisomy 15. Further, a significant difference in the detection rate of pCNVs was observed between non-isolated and isolated absent/hypoplastic nasal bone (24.44% vs. 8.16%, p < .05). CONCLUSION: The present study enhances the utility of CMA in diagnosing the etiology of absent or hypoplastic nasal bone in fetuses. Further, isolated cases of absent or hypoplastic nasal bone strongly suggest the presence of chromosomal abnormalities, necessitating genetic evaluation through CMA.


Subject(s)
DNA Copy Number Variations , Karyotyping , Microarray Analysis , Nasal Bone , Pregnancy Trimester, Second , Prenatal Diagnosis , Humans , Female , Nasal Bone/diagnostic imaging , Nasal Bone/abnormalities , Pregnancy , Microarray Analysis/methods , Adult , Prenatal Diagnosis/methods , DNA Copy Number Variations/genetics , Karyotyping/methods , Fetus , Chromosome Aberrations/embryology , Ultrasonography, Prenatal/methods , Genetic Association Studies/methods
13.
J Pharm Biomed Anal ; 245: 116166, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669816

ABSTRACT

The study aimed to investigate the relieving effect of QingYan Formula (QYF) in treating perimenopausal syndrome. A combination of metabonomic analysis and in vitro pharmacodynamic experiments was employed to achieve this objective.Over a period of 12 weeks, ovariectomized (OVX) rats were orally administered QYF's 70 % ethanol extract or estradiol valerate (EV). The results demonstrate that QYF restored the estrous cycle of ovariectomized rats and exhibited significant estrogenic activity, as indicated by reversal of uterine and vagina atrophy, improvement of serum estradiol level and decrease of serum luteinizing hormone(LH) level. Additionally, QYF administration effectively reduced high bone turnover and repaired trabecular microstructure damage. Metabonomic analysis of the OVX rats treated with QYF revealed the identification of 55 different metabolites in the serum, out of which 35 may be potential biomarkers. QYF could regulate the disturbed metabolic pathways including the Biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, bile secretion, and steroid hormone biosynthesis. PI3KCA, SRC, and MAPK3 are potential therapeutic targets for QYF therapeutic effects. These findings support the efficacy of QYF in alleviating perimenopausal syndrome and regulating lipid metabolic disorders in OVX rats.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Ovariectomy , Perimenopause , Rats, Sprague-Dawley , Animals , Female , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Rats , Perimenopause/drug effects , Estradiol/blood , Estradiol/pharmacology , Chromatography, High Pressure Liquid/methods , Biomarkers/blood , Luteinizing Hormone/blood , Estrous Cycle/drug effects , Uterus/drug effects , Uterus/metabolism , Disease Models, Animal
14.
Front Oncol ; 14: 1283252, 2024.
Article in English | MEDLINE | ID: mdl-38559557

ABSTRACT

Background: Older cancer survivors likely experience physical function limitations due to cancer and its treatments, leading to disability and early mortality. Existing studies have focused on factors associated with surgical complications and mortality risk rather than factors associated with the development of poor disability status (DS), a proxy measure of poor performance status, in cancer survivors. We aimed to identify factors associated with the development of poor DS among older survivors of colorectal cancer (CRC) and compare poor DS rates to an age-sex-matched, non-cancer cohort. Methods: This retrospective cohort study utilized administrative data from the Texas Cancer Registry Medicare-linked database. The study cohort consisted of 13,229 survivors of CRC diagnosed between 2005 and 2013 and an age-sex-matched, non-cancer cohort of 13,225 beneficiaries. The primary outcome was poor DS, determined by Davidoff's method, using predictors from 12 months of Medicare claims after cancer diagnosis. Multivariable Cox proportional hazards regression was used to identify risk factors associated with the development of poor DS. Results: Among the survivors of CRC, 97% were 65 years or older. After a 9-year follow-up, 54% of survivors of CRC developed poor DS. Significant factors associated with future poor DS included: age at diagnosis (hazard ratio [HR] = 3.50 for >80 years old), female sex (HR = 1.50), race/ethnicity (HR = 1.34 for Hispanic and 1.21 for Black), stage at diagnosis (HR = 2.26 for distant metastasis), comorbidity index (HR = 2.18 for >1), and radiation therapy (HR = 1.21). Having cancer (HR = 1.07) was significantly associated with developing poor DS in the pooled cohorts; age and race/ethnicity were also significant factors. Conclusions: Our findings suggest that a CRC diagnosis is independently associated with a small increase in the risk of developing poor DS after accounting for other known factors. The study identified risk factors for developing poor DS in CRC survivors, including Hispanic and Black race/ethnicity, age, sex, histologic stage, and comorbidities. These findings underscore the importance of consistent physical function assessments, particularly among subsets of older survivors of CRC who are at higher risk of disability, to prevent developing poor DS.

15.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1421-1428, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621925

ABSTRACT

To investigate the mechanism of action of aqueous extract of Strychni Semen(SA) on bone destruction in rats with type Ⅱ collagen-induced arthritis(CIA), the SD rats were randomly divided into normal group, model group, low, medium, and high dose(2.85, 5.70, and 11.40 mg·kg~(-1)) groups of SA, and methotrexate group. Except for the normal group, the CIA model was prepared for the other groups. After the second immunization, different doses of SA were given to the low, medium, and high dose groups of SA once a day, and the methotrexate group was given once every three days. 0.3% sodium hydroxymethylcellulose(CMC-Na) was given once a day to the normal and model groups for 28 d. The clinical score of arthritis was evaluated every three days. Micro computed tomography(Micro-CT) method was used to evaluate the degree of bone destruction. Histopathological changes in the joint tissue and the number of osteoclasts in CIA rats were evaluated by hematoxylin-eosin(HE) staining and tartrate-resistant acid phosphatase(TRAP) staining. The expression of interleukin-1ß(IL-1ß) in the joint tissue of rats was detected by immunohistochemistry. Western blot was used to detect key protein expression in mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathways in the joint tissue of rats. The results showed that different doses of SA were able to improve the red and swollen inflammatory joint and joint deformity in CIA rats to varying degrees, reduce the clinical score, inhibit synovial inflammation, vascular opacification, cartilage erosion, and bone destruction, and reduce the number of TRAP-positive cells in bone tissue. Micro-CT results showed that the SA was able to increase bone mineral density, bone volume fraction, trabecular reduce, and trabecular number and reduce bone surface/bone volume and trabecular separation/spacing. Different doses of SA could down-regulate the protein expression of IL-1ß, p-JNK, p-ERK, p-p38, PI3K, and p-Akt to varying degrees. In conclusion, SA can improve disease severity, attenuate histopathological and imaging changes in joints, and have osteoprotective effects in CIA rats, and its mechanism of action may be related to the inhibition of the overactivation of MAPK and PI3K/Akt signaling pathways.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Collagen Type II , Methotrexate , Proto-Oncogene Proteins c-akt , Semen , X-Ray Microtomography , Phosphatidylinositol 3-Kinases , Rats, Sprague-Dawley , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced
16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621927

ABSTRACT

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Subject(s)
Aconitine/analogs & derivatives , Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Animals , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Molecular Docking Simulation , Signal Transduction , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
17.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621928

ABSTRACT

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Synovial Membrane , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods
18.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621941

ABSTRACT

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Subject(s)
Artemisinins , Neuralgia , Mice , Animals , Pregabalin , gamma-Aminobutyric Acid , Neuralgia/drug therapy , Neuralgia/genetics , Neuralgia/metabolism
19.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1594-1601, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621944

ABSTRACT

The ovarian germline stem cells(OGSCs) cultured in the optimized culture system were used as the research object to observe the effect of Tripterygium glycosides(TG) on OGSCs and explore the mechanism of reproductive toxicity by the Notch signaling pathway. Cell counting kit-8(CCK-8) was used to observe the viability level of OGSCs in mice cultured in vitro by TG of 3.75, 7.5, and 15 µg·mL~(-1). Immunofluorescence technology and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the protein and gene expression level of OGSCs marker mouse vasa homologue(MVH) and octamer-binding transcription factor 4(Oct4) by TG of 3.75 µg·mL~(-1). RT-PCR detected the gene expression of neurogenic locus Notch homolog protein 1(Notch1), Hes family BHLH transcription factor 1(Hes1), and jagged canonical Notch ligand 1(Jagged1). The RNA was extracted for transcriptome analysis to analyze the mechanism of action of TG intervention on OGSCs. 3.75 µg·mL~(-1) of TG was combined with 40 ng·mL~(-1) Notch signaling pathway γ-secretagocin agonist jagged canonical notch ligand(Jagged) for administration. CCK-8 was used to detect the viability level of OGSCs. Double immunofluorescence technology was used to detect the protein co-expression of MVH with Hes1, Notch1, and Jagged1. The results showed that compared with the blank group, the TG administration group significantly inhibited the activity of OGSCs(P<0.01 or P<0.001). It could reduce the protein and gene expression of OGSC markers, namely MVH and Oct4(P<0.05, P<0.01, or P<0.001). It could significantly inhibit the gene expression of Notch1, Hes1, and Jagged1(P<0.001). Transcriptomic analysis showed that TG affected the growth and proliferation of OGSCs by intervening Jagged1, a ligand associated with the Notch signaling pathway. The experimental results showed that the combination of Notch signaling pathway γ-secretagorein agonist Jagged could significantly alleviate the decrease in OGSC viability induced by TG(P<0.001) and significantly increased the OGSC viability compared with the TG group(P<0.001). It also could significantly increase the co-expression of MVH/Jagged1, MVH/Hes1, and MVH/Notch1 proteins(P<0.01 or P<0.001). It suggested that TG play the role of γ-secretagorease inhibitors by downregulating the OGSC markers including MVH and Oct4 and Notch signaling pathway molecules such as Notch1, Hes1, and Jagged1, participate in the OGSC pathway, and mediate reproductive toxicity caused by the Notch signaling pathway.


Subject(s)
Oogonial Stem Cells , Mice , Animals , Oogonial Stem Cells/metabolism , Tripterygium , Ligands , Signal Transduction
20.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1343-1352, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621982

ABSTRACT

A research strategy combining transcriptome data mining and experimental verification was adopted to identify the marker genes characterizing the syndrome elements of phlegm, stasis, and deficiency in steroid-induced osteonecrosis of the femoral head(SONFH). Firstly, the common differentially expressed gene sets of SONFH with the syndromes of phlegm-stasis obstructing collaterals, vessel obstruction, and liver-kidney deficiency were obtained from the clinical transcriptomic analysis of a previous study. The differential expression trend analysis and functional gene mining were then employed to predict the candidate marker gene sets representing phlegm, stasis, and deficiency. The whole blood samples from SONFH patients, whole blood samples from SONFH rats, and affected femoral head tissue samples were collected for qPCR, which aimed to determine the expression levels of the candidate marker genes mentioned above. Furthermore, the receiver operating characteristic curve(ROC) was established to objectively evaluate the syndrome differentiation effectiveness of the candidate marker genes mentioned above. The transcriptome data analysis results showed that the candidate marker genes for phlegm was ELOVL fatty acid elongase 6(ELOVL6), and those for stasis were ankyrin 1(ANK1), glycophorin A/B(GYPA/B), and Rh-associated glycoprotein(RHAG). The candidate marker genes for deficiency were solute carrier family 2 member 1(SLC2A1) and stomatin(STOM). The qPCR results showed that compared with that in the non-SONFH group, ELOVL6 had the lowest expression level in the peripheral blood of the SONFH patients with the syndrome of phlegm-stasis obstructing collaterals(P<0.05). Compared with that in the normal control group, ELOVL6 had the lowest expression level in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 4 weeks(P<0.01), and it showed better syndrome differentiation effectiveness of rats modeled for 4 weeks(AUC=0.850, P=0.006) than at other modeling time points(8, 12, 16, and 21 weeks, AUC of 0.689, 0.766, 0.588, and 0.662, respectively). Compared with that in the non-SONFH group, the expression levels of ANK1, GYPA, and RHAG were the lowest in the peripheral blood of SONFH patients with the vessel obstruction syndrome(P<0.05). The expression levels of the three genes were the lowest in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 12 weeks(P<0.05, P<0.01), and their syndrome differentiation effectiveness in the rats modeled for 12 weeks(GYPA: AUC=0.861, P=0.012; ANK1: AUC=0.855, P=0.006; RHAG: AUC=0.854, P=0.009) was superior to that for 4, 8, 16, and 21 weeks(GYPA: AUC=0.646, 0.573, 0.691, and 0.617, respectively; ANK: AUC1=0.630, 0.658, 0.657, and 0.585, respectively; RHAG: AUC=0.592, 0.511, 0.515, and 0.536, respectively). Compared with the non-SONFH group, both SLC2A1 and STOM had the lowest expression levels in the peripheral blood of patients with the syndrome of liver and kidney deficiency(P<0.05). Compared with the normal control group, their expression levels were the lowest in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 21 weeks(P<0.05, except STOM in the peripheral blood of rats). Moreover, the syndrome differentiation effectiveness of SLC2A1 in the rats modeled for 21 weeks(AUC=0.806, P=0.009) was superior to that for 4, 8, 12, and 16 weeks(AUC=0.520, 0.580, 0.741, 0.774, respectively), and STOM was meaningless in syndrome differentiation. In summary, the candidate marker gene for phlegm in SONFH is ELOVL6; the candidate marker genes for stasis are GYPA, RHAG, and ANK1; the candidate marker gene for deficiency is SLC2A1. The results help to reveal the biological connotations of phlegm, stasis, and deficiency in SONFH at the genetic level.


Subject(s)
Animal Experimentation , Osteonecrosis , Vascular Diseases , Humans , Rats , Animals , Transcriptome , Femur Head , Syndrome , Steroids/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...