Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 196: 105584, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945222

ABSTRACT

Insecticides have been widely used for the control of insect pests that have a significant impact on agriculture and human health. A better understanding of insecticide targets is needed for effective insecticide design and resistance management. Pymetrozine, afidopyropen and flonicamid are reported to target on proteins that located on insect chordotonal organs, resulting in the disruption of insect coordination and the inhibition of feeding. In this study, we systematically examined the susceptibility of six Drosophila melanogaster mutants (five transient receptor potential channels and one mechanoreceptor) to three commercially used insecticides, in order to identify the receptor subunits critical to the insect's response to insecticides. Our results showed that iav1, nan36aand wtrw1 mutants exhibited significantly reduced susceptibility to pymetrozine and afidopyropen, but not to flonicamid. The number of eggs produced by the three mutant females were significantly less than that of the w1118 strain. Meanwhile, the longevity of all male mutants and females of nan36a and wtrw1 mutants was significantly shorter than that of the w1118 strain as the control. However, we observed no gravitaxis defects in wtrw1 mutants and the anti-gravitaxis of wtrw1 mutants was abolished by pymetrozine. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that Nan as a TRPV subfamily member located in Drosophila chordotonal neurons, acting as a target of pymetrozine, which interferes with Drosophila and causes motor deficits with gravitaxis defects. Taken together, this study elucidates the interactions of pymetrozine and afidopyropen with TRPV channels, Nan and Iav, and TRPA channel, Wtrw. Our research provides another evidence that pymetrozine and afidopyropen might target on nan, iav and wtrw channels and provides insights into the development of sustainable pest management strategies.


Subject(s)
Drosophila melanogaster , Insecticides , Animals , Female , Humans , Drosophila melanogaster/genetics , Insecticides/pharmacology , Reverse Genetics , Drosophila/genetics
2.
Insects ; 14(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233057

ABSTRACT

On the basis of the inhibition effects of pymetrozine on the reproductive behavior of N. lugens, we established a bioassay method to accurately evaluate the toxicity of pymetrozine in N. lugens and clarified the level of pymetrozine resistance of N. lugens in the field. In this study, pymetrozine's effects on the fecundity of N. lugens were evaluated using the topical application method and rice-seedling-dipping method. Moreover, the resistance of N. lugens to pymetrozine in a pymetrozine-resistant strain (Pym-R) and two field populations (YZ21 and QS21) was determined using the rice-seedling-dipping method and fecundity assay methods. The results showed that treatment of N. lugens third-instar nymphs with LC15, LC50, and LC85 doses of pymetrozine resulted in a significantly reduced fecundity of N. lugens. In addition, N. lugens adults treated with pymetrozine, using the rice-seedling-dipping and topical application method, also exhibited a significantly inhibited fecundity. Using the rice-stem-dipping method, pymetrozine resistance levels were shown to be high in Pym-R (194.6-fold), YZ21 (205.9-fold), and QS21 (212.8-fold), with LC50 values of 522.520 mg/L (Pym-R), 552.962 mg/L (YZ21), and 571.315 (QS21) mg/L. However, when using the rice-seedling-dipping or topical application fecundity assay method, Pym-R (EC50: 14.370 mg/L, RR = 12.4-fold; ED50: 0.560 ng/adult, RR = 10.8-fold), YZ21 (EC50: 12.890 mg/L, RR = 11.2-fold; ED50: 0.280 ng/adult; RR = 5.4-fold), and QS21 (EC50: 13.700 mg/L, RR = 11.9-fold) exhibited moderate or low levels of resistance to pymetrozine. Our studies show that pymetrozine can significantly inhibit the fecundity of N. lugens. The fecundity assay results showed that N. lugens only developed low to moderate levels of resistance to pymetrozine, indicating that pymetrozine can still achieve effective control on the next generation of N. lugens populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...