Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7004, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919297

ABSTRACT

The absence of thermalization in certain isolated many-body systems is of great fundamental interest. Many-body localization (MBL) is a widely studied mechanism for thermalization to fail in strongly disordered quantum systems, but it is still not understood precisely how the range of interactions affects the dynamical behavior and the existence of MBL, especially in dimensions D > 1. By investigating nonequilibrium dynamics in strongly disordered D = 2 electron systems with power-law interactions ∝ 1/rα and poor coupling to a thermal bath, here we observe MBL-like, prethermal dynamics for α = 3. In contrast, for α = 1, the system thermalizes, although the dynamics is glassy. Our results provide important insights for theory, especially since we obtained them on systems that are much closer to the thermodynamic limit than synthetic quantum systems employed in previous studies of MBL. Thus, our work is a key step towards further studies of ergodicity breaking and quantum entanglement in real materials.

2.
Phys Rev Lett ; 114(16): 166401, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25955059

ABSTRACT

A study of the temperature (T) and density (ns) dependence of conductivity σ(ns,T) of a highly disordered, two-dimensional (2D) electron system in Si demonstrates scaling behavior consistent with the existence of a metal-insulator transition (MIT). The same critical exponents are found when the Coulomb interaction is screened by the metallic gate and when it is unscreened or long range. The results strongly suggest the existence of a disorder-dominated 2D MIT, which is not directly affected by the range of the Coulomb interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...