Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(19): 14305-14316, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693910

ABSTRACT

Self-assembled monolayers (SAMs) have been successfully employed to enhance the efficiency of inverted perovskite solar cells (PSCs) and perovskite/silicon tandem solar cells due to their facile low-temperature processing and superior device performance. Nevertheless, depositing uniform and dense SAMs with high surface coverage on metal oxide substrates remains a critical challenge. In this work, we propose a holistic strategy to construct composite hole transport layers (HTLs) by co-adsorbing mixed SAMs (MeO-2PACz and 2PACz) onto the surface of the H2O2-modified NiOx layer. The results demonstrate that the conductivity of the NiOx bulk phase is enhanced due to the H2O2 modification, thereby facilitating carrier transport. Furthermore, the hydroxyl-rich NiOx surface promotes uniform and dense adsorption of mixed SAM molecules while enhancing their anchoring stability. In addition, the energy level alignment at the interface is improved due to the utilization of mixed SAMs in an optimized ratio. Furthermore, the perovskite film crystal growth is facilitated by the uniform and dense composite HTLs. As a result, the power conversion efficiency of PSCs based on composite HTLs is boosted from 22.26% to 23.16%, along with enhanced operational stability. This work highlights the importance of designing and constructing NiOx/SAM composite HTLs as an effective strategy for enhancing both the performance and stability of inverted PSCs.

2.
ACS Appl Mater Interfaces ; 16(11): 14006-14014, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38450480

ABSTRACT

Halide perovskites have emerged as promising candidates in X-ray detection due to their strong X-ray absorption and excellent optoelectronic properties. The development of sensitive and stable flat-panel X-ray detectors with high resolution is crucial for practical applications. In this paper, we introduce a novel flat-panel X-ray detector that integrates quasi-two-dimensional (2D) Ruddlesden-Popper (RP) perovskite with a pixeled thin film transistor (TFT) backplane. We incorporate 2,5-dibromopyrimidine (DBPM) as an additive to passivate the Lewis acid defects in the quasi-2D RP perovskite. This modification results in suppressed ion migration, improved optoelectronic performance, and enhanced operational stability of the device. Impressively, the activation energy of the RP perovskite increases from 0.96 to 1.35 eV with the DBPM additive. As a result, X-ray detectors exhibit a high sensitivity of ∼13,600 µC Gyair-1 cm-2, a low detection limit of 6.56 nGyair s-1, and excellent operational stability. Moreover, the flat-panel detectors demonstrate a high spatial resolution of 3.7 line pairs per millimeter and excellent X-ray imaging properties under a remarkably low X-ray dose of ∼50 µGyair, which is just half of the X-ray dose typically used in commercial equipment. This study opens new avenues for the development of flat-panel perovskite X-ray detectors with significant potential for various applications.

3.
ACS Appl Mater Interfaces ; 12(44): 49648-49658, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33100010

ABSTRACT

Scalable fabrication of perovskite solar cells (PSCs) with high reliability is one of the most pivotal concerns that must be addressed before they get into the photovoltaic (PV) market. Scaling large-area high-quality perovskite films is of great importance in this process. Here, gaseous therapy has been proposed for the post-treatment of perovskite films with high scalability and low cost. An inspiring evolvement from poor perovskite films to high quality ones is demonstrated under a joint treatment of methylamine gas and hot solvent vapors. The perovskite films are completely reconstructed and repaired regardless of the morphology of the original films. As a consequence, small-area (0.09 cm2) and large-area (4 cm2) PSCs based on the healed MAPbI3 films can afford J-V scanned efficiencies of 19.2 and 16.5% under a reverse sweep, respectively. Furthermore, stabilized power outputs of 18.5 and 15.2% are obtained from the small one and large one under continuous maximum power point tracking.

SELECTION OF CITATIONS
SEARCH DETAIL
...