Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 31(6): 738-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594444

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.


Subject(s)
Glioblastoma , NF-kappa B , Neoplastic Stem Cells , Signal Transduction , Tumor-Associated Macrophages , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Animals , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , NF-kappa B/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...