Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 8(8): 3875-3891, 2019 07.
Article in English | MEDLINE | ID: mdl-31116002

ABSTRACT

BACKGROUND: Rectal adenocarcinoma (READ) is one of the deadliest malignancies, and the molecular mechanisms underlying the initiation and development of READ remain largely unknown. In this study, we aimed to find key long noncoding RNAs (lncRNAs) and mRNAs in READ by RNA sequencing. METHODS: RNA sequencing was performed to identify differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) between READ and normal tissue. READ-specific protein-protein interaction (PPI), DElncRNA-DEmRNA coexpression, and DElncRNA-nearby DEmRNA interaction networks were constructed. DEmRNAs and DEmRNAs coexpressed with DElncRNAs were functionally annotated. RESULTS: A total of 2113 DEmRNAs and 150 DElncRNAs between READ and normal tissue were identified. The PPI network identified several hub proteins, including CDK1, AURKB, CDC6, FOXQ1, NUF2, and TOP2A. The DElncRNA-DEmRNA coexpression and DElncRNA-nearby DEmRNA interaction networks identified some hub lncRNAs, including CCAT1, LOC105374879, GAS5, and B3GALT5-AS1. The colorectal cancer pathway, the intestinal immune network for IgA production and the p53 signaling pathway were three pathways significantly enriched in DEmRNAs and DEmRNAs coexpressed with DElncRNAs. MSH6 coexpressed with two DElncRNAs (LOC105374879 and CASC15) and BCL2 coexpressed with B3GALT5-AS1 were significantly enriched in the colorectal cancer signaling pathway. TNFRSF17 coexpressed with B3GALT5-AS1 was enriched in the intestinal immune network for IgA production. CCNB2 coexpressed with LOC105374879 was enriched in the p53 signaling pathway. CONCLUSION: A total of four DEmRNAs (MSH6, BCL2, TNFRSF17, and CCNB2) and three DElncRNAs (LOC105374879, CASC15, and B3GALT5-AS1) may be involved in the pathogenesis of READ; this data may contribute to understanding the mechanisms of READ and the development of therapeutic strategies for READ.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Rectal Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Aged, 80 and over , Computational Biology/methods , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Rectal Neoplasms/diagnosis , Rectal Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...