Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672082

ABSTRACT

BACKGROUND: As one of the important components of immunotherapies, mRNA vaccines have displayed promising clinical outcomes in solid tumors. Nonetheless, their efficacy remains unclear in pancreatic adenocarcinoma (PAAD). Given the interaction of pyroptosis with anticancer immunity, our study aims to identify pyroptosis-related antigens for mRNA vaccine development and discern eligible candidates for vaccination. METHODS: Utilizing gene expression data from TCGA and ICGC, we integrated RNA-seq data and compared genetic alterations through cBioPortal. Differential gene expressions were integrated using GEPIA. Relationships between immune cell abundance and tumor antigens were analyzed and visualized via TIMER. WGCNA facilitated the clustering of pyroptosis-related genes, identification of hub genes, and pathway enrichment analyses. Pyroptosis landscape was depicted through graph learning-based dimensional reduction. RESULTS: Four overexpressed and mutant pyroptosis-related genes associated with poor prognosis were identified as potential antigens for mRNA vaccines in PAAD, including ANO6, PAK2, CHMP2B, and RAB5A. These genes displayed positive associations with antigen-presenting cells. PAAD patients were stratified into three pyroptosis subtypes. Notably, the PS3 subtype, characterized by a lower mutation count and TMB, exhibited "cold" immunological traits and superior survival compared to other subtypes. The pyroptosis landscape exhibited considerable heterogeneity among individuals. Furthermore, the turquoise module emerged as an independent prognostic indicator and patients with high expressions of hub genes might not be suitable candidates for mRNA vaccination. CONCLUSIONS: In PAAD, ANO6, PAK2, CHMP2B, and RAB5A are prospective pyroptosis-related antigens for mRNA vaccine development, which holds potential benefits for patients classified as PS3 and those with diminished hub gene expressions, providing insights into personalized mRNA vaccine strategies.

2.
Small ; : e2310801, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308086

ABSTRACT

Lithium-sulfur (Li-S) batteries show extraordinary promise as a next-generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li2 S), and substantial Li2 S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WOx /W2 C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li2 S oxidation, as well as controlled Li2 S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li2 S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li2 S. These attributes enable Li-S cells to deliver high-rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li2 S oxidation under practical cell conditions.

3.
J Cancer Res Clin Oncol ; 149(4): 1453-1463, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35484360

ABSTRACT

PURPOSE: Among soft tissue sarcomas, undifferentiated pleomorphic sarcoma (UPS) has relatively higher potential of recurrence and metastasis. As serum lactate dehydrogenase (LDH) is associated with tumor progression and unfavorable outcomes in multiple malignancies, we designed this study to explore the relationship between preoperative serum LDH and prognosis in UPS patients. METHODS: We extracted the data of UPS patients who underwent primary surgery in Shanghai Cancer Center, Fudan University. Receiver-operating characteristic (ROC) curve was used to figure out the best cutoff value of LDH to classify them into high- or low-expression groups. Univariate and multivariate analyses were performed using Cox proportional hazards regression to identify independent prognostic factors. Kaplan-Meier analysis was used to compare differences in overall survival (OS) and time to recurrence (TTR) between patients with high- or low-serum LDH. RESULTS: Multivariate analyses demonstrated that preoperative serum LDH was an independent factor for OS. Kaplan-Meier curves showed that patients with relatively high-serum LDH (P = 0.0004) had poorer OS compared with those with low-serum LDH. There was a trend that patients with relatively high-serum LDH had poorer TTR than those without (P = 0.1249). In addition, there were obvious trends that patients with decreased serum LDH after surgery showed better OS (P = 0.0954) and TTR (P = 0.1720) than those with elevated serum LDH. Moreover, high preoperative serum LDH was associated with female patients (P = 0.0004), positive margin (P < 0.0001), worse survival (P = 0.0061), higher mitotic index (P = 0.0222) and necrosis (P = 0.0225). CONCLUSIONS: Preoperative serum LDH is an independent factor for OS in UPS patients, and it correlates with future surgical margin.


Subject(s)
Sarcoma , Humans , Female , Prognosis , China/epidemiology , Kaplan-Meier Estimate , Sarcoma/surgery , Lactate Dehydrogenases
4.
Cancer Med ; 12(2): 1204-1216, 2023 01.
Article in English | MEDLINE | ID: mdl-35856487

ABSTRACT

BACKGROUND: Total omentectomy is often performed with gastrectomy as radical surgery for gastric cancer (GC) patients. However, it remains controversial whether GC patients can benefit from omentectomy. The aim of this study was to analyze the incidence and clinical significance of tumor deposits (TDs) in different anatomical subregions of perigastric omentum in GC patients undergoing gastrectomy with total omentectomy. METHODS: From October 2011 to December 2013, 1253 patients who underwent gastrectomy with total omentectomy for GC were retrospective reviewed. The TDs in different anatomical subregions of perigastric omentum were examined. RESULTS: Of 1253 patients, TDs positivity was 11.2%. Tumor deposits in the omentum of greater curvature and in the omentum of lesser curvature were associated with lymphovascular invasion, perineural invasion, advanced tumor node metastasis stages, and unfavorable survival. Besides, TDs in the proximal omentum of greater curvature and in the omentum of lesser curvature correlated with older patients and larger tumors. Kaplan-Meier curves showed that patients with TDs had worser overall survival (OS) than those without, regardless of TD positions. Patients with TDs in the omentum of greater curvature had the worst prognosis, followed by patients with TDs in the omentum of lesser curvature and patients with no TDs. Tumor deposits in the proximal omentum of greater curvature was an independent prognostic factor for OS. Moreover, only patients classified as pT4 had TDs in the distal omentum of greater curvature. CONCLUSIONS: Patients with TDs in the omentum of greater curvature had the worst prognosis, followed by patients with TDs in the omentum of lesser curvature and patients with no TDs. In addition, partial omentectomy might be practicable for gastric cancer patients classified as T3 or shallower tumors.


Subject(s)
Stomach Neoplasms , Humans , Neoplasm Staging , Retrospective Studies , Stomach Neoplasms/pathology , Extranodal Extension/pathology , Prognosis , Gastrectomy
5.
Natl Sci Rev ; 9(8): nwac084, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35992230

ABSTRACT

Non-graphitic carbons are promising anode candidates for sodium-ion batteries, while their variable and complicated microstructure severely limits the rational design of high-energy carbon anodes that could accelerate the commercialization of sodium-ion batteries, as is the case for graphite in lithium-ion batteries. Here, we propose sieving carbons, featuring highly tunable nanopores with tightened pore entrances, as high-energy anodes with extensible and reversible low-potential plateaus (<0.1 V). It is shown that the tightened pore entrance blocks the formation of the solid electrolyte interphase inside the nanopores and enables sodium clustering to produce the plateau. Theoretical and spectroscopic studies also show that creating a larger area of sodiophilic pore surface leads to an almost linearly increased number of sodium clusters, and controlling the pore body diameter guarantees the reversibility of sodium cluster formation, producing a sieving carbon anode with a record-high plateau capacity of 400 mAh g-1. More excitingly, this approach to preparing sieving carbons has the potential to be scalable for modifying different commercial porous carbons.

6.
ACS Appl Mater Interfaces ; 14(10): 12323-12330, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35234443

ABSTRACT

Zinc (Zn) metal is an attractive anode material for aqueous Zn-ion batteries (ZIBs). Three-dimensional (3D) carbon frameworks may serve as lightweight and robust hosts to enable porous Zn electrodes with a long cycle life. However, Zn electrode tests under a low depth of discharge (DOD) and current density often yield unreliable promises. We used 3D Zn electrodes with carbon nanofiber framework (CNF) backbones (Zn@CNF) as model electrodes to reveal how DOD and current density affect their performance. Plasma-treated CNFs provide sufficient surface hydrophilicity and surface area to allow uniform Zn plating/stripping of a thin and uniform Zn coating (5 mAh cm-2). CNFs only take a small weight fraction (17.5-19.7 wt. %) in the composite electrodes. The 3D structure and graphitic surface efficiently suppress dendrite growth. The cycle life of Zn@CNF can reach 843 h under 10% DOD and 0.5 mA cm-2 in symmetric cells. However, high DOD and current density are detrimental to the stability of 3D Zn electrodes. The cycle life drops to 60.75 h under 60% DOD and 4 mA cm-2. Full cells assembled using Zn@CNF as anodes and V2O5 as cathodes with an N/P capacity ratio of 2.4 delivered a capacity of 133.4 mAh g-1 at 0.1 A g-1. The full cells also showed excellent capacity retention of 92.1% after 260 cycles under 0.5 A g-1 with a high average DODZn of 15.5%. Our results suggest that 3D Zn electrodes with CNF backbones are promising anodes for ZIBs. Studying Zn metal electrodes under practical DOD and current density is essential to access their potential accurately.

7.
Small Methods ; 5(4): e2001035, 2021 04.
Article in English | MEDLINE | ID: mdl-34927844

ABSTRACT

Lithium metal is the most promising candidate anode material for high energy density batteries, but its high activity and severe dendrite growth lead to safety concerns and limit its practical use. Constructing a protective layer (PL) on the lithium surface to avoid the side reactions and stabilize the electrode-electrolyte interface is an effective approach to solve these problems. In this review, the recent progress on PLs is summarized, and their desired properties and design principles are discussed from the aspects of materials selection and the corresponding fabrication methods. Advanced PLs with different properties are then highlighted, including a self-adjusting feature to increase structural integrity, the synergistic effect of organic and inorganic hybrids to improve mechanical properties and ionic conductivity, the use of embedded groups and ion diffusion channels to regulate ion distribution and flux, and a protective barrier to suppress corrosion from humid air or water. Finally, the remaining challenges and the possible solutions for PL design in future studies are proposed.

8.
Int J Biol Sci ; 17(15): 4285-4304, 2021.
Article in English | MEDLINE | ID: mdl-34803498

ABSTRACT

Circular RNAs (circRNAs) is a novel class of non-coding RNAs resulting from the non-canonical splicing of linear pre-mRNAs. However, the role of circRNAs in gastric cancer (GC) remains indistinct. This study aims to explore their potential modulation in GC and its prognostic value. We first screen for circRNA expression patterns in GC through GC and adjacent noncancerous tissues by microarray. Based on the bioinformatics analysis of the microarray data, we screened out a novel circRNA, circ-PTPDC1. Then we demonstrated that circ-PTPDC1 was up-regulated in GC cells, tissues, and serum. Its overexpression was positively correlated with age, invasion depth, advanced clinical stages, and worse survival in patients with GC. We further revealed that circ-PTPDC1 promotes the proliferation, migration, and invasion of GC cell lines via sponging miR-139-3p by regulating ELK1. Importantly, we identified that circ-PTPDC1 promotes tumor upgrowth and metabasis in vivo. Additionally, we established its prognostic prediction model based on the follow-up data of the patients. Our study revealed a novel regulatory mechanism and a comprehensive landscape of circ-PTPDC1 in GC, suggesting that circ-PTPDC1 has the potential to be a biomarker for early detection and prognostic prediction of GC.


Subject(s)
Biomarkers, Tumor/metabolism , MicroRNAs/metabolism , Stomach Neoplasms/metabolism , ets-Domain Protein Elk-1/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , MicroRNAs/genetics , Middle Aged , Neoplasms, Experimental/metabolism , Protein Binding , Stomach Neoplasms/pathology , Up-Regulation , ets-Domain Protein Elk-1/genetics
9.
ACS Nano ; 15(10): 16878-16886, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34596380

ABSTRACT

Catalysis is an effective way to improve the performance of lithium-sulfur (Li-S) batteries by enhancing the reaction kinetics of polysulfides. However, the bidirectional catalysis for discharging and charging processes in Li-S battery is still challenging. Herein, a (110) facet-dominated VO2 is prepared through the thermal-induced partial decomposition of (NH4)2V4O9 (NVO), forming a (110)VO2@NVO hybrid with the bidirectional catalysis ability. This (110) facet-dominated VO2 shows the ability to break the S-S bond to guide the Li2S deposition in the reduction process and reduce the delithiation barrier of Li2S to promote the oxidation process. The above hybrid is loaded on carbon nanofiber (CNF) to build an interlayer, where the 3D CNF and the conductive NVO ensure the fast electron transfer. The assembled battery with the above interlayer exhibits a high capacity of 1038 mAh g-1 after 300 cycles at 0.1 C (capacity retention: 70%). At a high rate of 5 C, a high capacity of 521 mAh g-1 after 1000 cycles is reached. Even under an ultrahigh sulfur loading of 10.3 mg cm-2 and a low electrolyte/sulfur ratio of 4 µL mgS-1, stable cycling performance with a high capacity of >3 mAh cm-2 is also achieved.

10.
Phys Chem Chem Phys ; 23(38): 21385-21398, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34549210

ABSTRACT

Lithium-sulfur batteries (LSBs) have received intensive attention in recent years due to their high theoretical energy density derived from the lithiation of sulfur. In the discharge process, sulfur transforms into lithium polysulfides (LiPSs) that dissolve in liquid electrolytes and then into insoluble Li2S precipitated on the electrode surface. The electronically and ionically insulating Li2S leads to two critical issues, including the sluggish reaction kinetics from LiPSs to Li2S and the passivation of the electrode. In this regard, controlling the Li2S deposition is significant for improving the performance of LSBs. In this perspective, we have summarized the recent achievements in regulating the Li2S deposition to enhance the performance of LSBs, including the solution-mediated growth of Li2S, sulfur host enhanced nucleation and catalysis induced kinetic improvement. Moreover, the challenges and possibilities for future research studies are discussed, highlighting the significance of regulating the Li2S deposition to realize the high electrochemical performance and promote the practical uses of LSBs.

11.
ACS Nano ; 15(7): 11491-11500, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34190550

ABSTRACT

The practical uses of lithium-sulfur batteries are greatly restricted by the sluggish reaction kinetics of lithium polysulfides (LiPSs), leading to low sulfur utilization and poor cyclic stability. Using the heterostructure catalysts is an effective way to solve the above problems, but how to further enhance the conversion efficiency and avoid the surface passivation by the insulative Li2S has not been well investigated. Herein, a heterostructure catalyst with rich heterointerfaces was prepared by modifying Mo2N microbelt with SnO2 nanodots. The formed rich interfaces with high accessibility act as the profitable nucleation sites guiding the Li2S 3D growth, which avoids the catalyst surface passivation and facilitates the LiPS conversion. The introduction of SnO2 nanodots also enhances the LiPS adsorption. Thus, the assembled battery with the above catalyst as the cathode additive shows a high capacity of 738.3 mAh g-1 after 550 cycles at 0.5 C with an ultralow capacity decay of 0.025% per cycle. Even with high sulfur loading of 9.0 mg cm-2, good cyclic stability is also achieved at 0.5 C with a low E/S ratio of 5 µL mgs-1. This work shows an effective way to enhance the LiPS conversion kinetics and guide Li2S deposition in Li-S batteries.

12.
Cancers (Basel) ; 13(8)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921187

ABSTRACT

BACKGROUND: Undifferentiated pleomorphic sarcomas (UPS) were one of the most common soft tissue sarcomas. As UPS had relatively high potentials of recurrence and metastasis, we designed two nomograms to better predict the overall survival (OS) and time to recurrence (TTR) for patients who underwent primary surgery. METHODS: The data of UPS patients who underwent primary surgery were extracted from Shanghai Cancer Center, Fudan University. Multivariate analyses were performed using Cox proportional hazards regression to identify independent prognostic factors. Kaplan-Meier analysis was used to compare differences for patients who underwent primary surgery in OS and TTR. Nomograms were designed with the help of R software and validated using calibration curves and receiver operating characteristic curves (ROC). RESULTS: Kaplan-Meier curves showed that patients with older ages (p = 0.0024), deeper locations (p = 0.0422), necrosis (p < 0.0001), G3 French Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) classification (p < 0.0001), higher Ki-67 (p < 0.0001), higher mitotic index (p < 0.0001), R1/R2 resections (p = 0.0002) and higher invasive depth (p = 0.0099) had shorter OS than the other patients while patients with older ages (p = 0.0108), necrosis (p = 0.0001), G3 FNCLCC classification (p < 0.0001), higher Ki-67 (p = 0.0006), higher mitotic index (p < 0.0001) and R1/R2 resections (p < 0.0001) had shorter TTR compared with those without. Multivariate analyses demonstrated that mitotic rates and surgical margin were independent factors for TTR while age and invasive depth were independent factors for OS. Three parameters were adopted to build the nomograms for 3- and 5-year OS and TTR. The Area Under Curve (AUC) of this nomogram at 3- and 5-year TTR reached 0.802, 0.814, respectively, while OS reached 0.718, 0.802, respectively. Calibration curves for the prediction of 3- and 5-year OS and TTR showed excellent agreement between the predicted and the actual survival outcomes. CONCLUSIONS: Some important parameters could be used to predict the outcome of individual UPS patients such as mitotic age, rates, surgical margin, and invasive depth. We developed two accurate and practicable nomograms that could predict 3- and 5-year OS and TTR for UPS patients, which could be involved in the modern medical decision-making process.

13.
BMC Cancer ; 20(1): 1035, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33115433

ABSTRACT

BACKGROUND: Treating patients with advanced sarcomas is challenging due to great histologic diversity among its subtypes. Leiomyosarcoma (LMS) and de-differentiated liposarcoma (DDLPS) are two common and aggressive subtypes of soft tissue sarcoma (STS). They differ significantly in histology and clinical behaviors. However, the molecular driving force behind the difference is unclear. METHODS: We collected 20 LMS and 12 DDLPS samples and performed whole exome sequencing (WES) to obtain their somatic mutation profiles. We also performed RNA-Seq to analyze the transcriptomes of 8 each of the LMS and DDLPS samples and obtained information about differential gene expression, pathway enrichment, immune cell infiltration in tumor microenvironment, and chromosomal rearrangement including gene fusions. Selected gene fusion events from the RNA-seq prediction were checked by RT-PCR in tandem with Sanger sequencing. RESULTS: We detected loss of function mutation and deletion of tumor suppressors mostly in LMS, and oncogene amplification mostly in DDLPS. A focal amplification affecting chromosome 12q13-15 region which encodes MDM2, CDK4 and HMGA2 is notable in DDLPS. Mutations in TP53, ATRX, PTEN, and RB1 are identified in LMS but not DDLPS, while mutation of HERC2 is only identified in DDLPS but not LMS. RNA-seq revealed overexpression of MDM2, CDK4 and HMGA2 in DDLPS and down-regulation of TP53 and RB1 in LMS. It also detected more fusion events in DDLPS than LMS (4.5 vs. 1, p = 0.0195), and the ones involving chromosome 12 in DDLPS stand out. RT-PCR and Sanger sequencing verified the majority of the fusion events in DDLPS but only one event in LMS selected to be tested. The tumor microenvironmental signatures are highly correlated with histologic types. DDLPS has more endothelial cells and fibroblasts content than LMS. CONCLUSIONS: Our analysis revealed different recurrent genetic variations in LMS and DDLPS including simultaneous upregulation of gene expression and gene copy number amplification of MDM2 and CDK4. Up-regulation of tumor related genes is favored in DDLPS, while loss of suppressor function is favored in LMS. DDLPS harbors more frequent fusion events which can generate neoepitopes and potentially targeted by personalized immune treatment.


Subject(s)
Biomarkers, Tumor/genetics , Gene Amplification , Genomics/methods , Leiomyosarcoma/pathology , Liposarcoma/pathology , Mutation , Transcriptome , Adolescent , Adult , Aged , Cell Differentiation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Leiomyosarcoma/genetics , Liposarcoma/genetics , Male , Middle Aged , Prognosis , RNA-Seq , Exome Sequencing , Young Adult
14.
Orphanet J Rare Dis ; 15(1): 153, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546179

ABSTRACT

BACKGROUND: Extra-pelvic intravenous leiomyomatosis (IVL) extending into inferior vena cava (IVC) or heart (i.e. intracardiac leiomyomatosis, ICL) is an extremely rare benign disease. No consensus has been reached on the optimal surgical strategy. The aim of this study is to introduce four types of one-stage surgical strategies including less invasive options and a guideline to select patient-specific strategy for this disease. METHODS: Twenty-four patients of extra-pelvic IVLs receiving one-stage resections at the Zhongshan Hospital from July 2011 to November 2019 were reviewed retrospectively. Base on the initial experiences of the indiscriminate choices of tumor thrombectomies through sterno-laparotomy under cardiopulmonary bypass (CPB) in 6 ICLs, an anatomy-based guideline for four types of surgical strategies was developed and applied for the next 18 patients. RESULTS: Under the direction of guideline, tumor thrombectomies through single laparotomy were applied without CPB in 2 ICLs and 4 IVLs confined in IVC, or with CPB in 7 ICLs. Guideline-directed double-incisions with CPB were applied in only 5 ICLs, including 1 receiving mini-thoracotomy and 4 receiving sternotomy because of tumor adherences with right atriums in 2 and with pulmonary arteries in 2. All 24 patients accomplished one-stage panhysterectomy, bilateral adnexectomy and complete resections of intracaval and intracardiac tumors. For residual pelvic intravenous tumors in 19 patients, 17 received macroscopically complete resections while the other 2 failed because of high risk of hemorrhage. Intraoperative blood losses, operation time and hospitalization expense in the single-laparotomy non-CPB group were significantly lesser than the other groups. In CPB groups, inpatient stay and hospitalization expense in the single-incision group were significantly lesser than the double-incisions group. All patients were alive and free of recurrences during a mean follow-up of 35.4 ± 27.2 months (range, 1-100 months). The pelvic tumor residues in 2 patients remained unchanged for 51 and 52 months since operation, respectively. CONCLUSIONS: For various extra-pelvic IVLs, the 4 types of surgical strategies including less invasive options are feasible, providing these are selected by a guideline base on the tumor extension and morphology. The proposed guideline is believed to accommodate more patients receiving less invasive surgery without compromising the curative effect.


Subject(s)
Heart Neoplasms , Leiomyomatosis , Heart Neoplasms/surgery , Humans , Leiomyomatosis/surgery , Neoplasm Recurrence, Local , Retrospective Studies , Vena Cava, Inferior/surgery
15.
Nanoscale ; 12(23): 12308-12316, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32497156

ABSTRACT

The shuttling of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries results in low sulfur utilization and fast capacity decay, hindering their practical applications. Constructing an interlayer is an efficient way to block the LiPS shuttling, but maintaining a low Li ion diffusion resistance with such an interlayer is hard to achieve. Herein, a thin porous carbon nanosheet embedded with TiO2 nanoparticles (denoted PCNS-TiO2) was used to fabricate an interlayer on the separator, which effectively solves the above problem. The PCNS-TiO2 was prepared by using the Ti3C2Tx MXene as the two-dimensional (2D) template directing the porous carbon sheet formation, and the Ti3C2Tx transformed into TiO2 nanoparticles embedded in the PCNS. The decomposition of the MXene eliminates the ion blocking effect by the 2D nanosheet structure. The thin and hierarchical porous structure allows fast Li ion diffusion across the interlayer, and at the same time, the porous structure and the strong adsorption ability of TiO2 effectively block the polysulfide diffusion. Thus, the Li-S battery with this interlayer shows good rate performance with a high capacity of 627 mA h g-1 at 2 C. Meanwhile, stable cycling performance is also achieved, showing a low capacity decay of 0.063% per cycle after 300 cycles at 0.5 C.

16.
Oncoimmunology ; 9(1): 1747339, 2020.
Article in English | MEDLINE | ID: mdl-32313726

ABSTRACT

Tumor-infiltrating tertiary lymphoid structures (TLS) are thought to have anti-tumor activity and are believed to indicate a favorable prognosis in cancer patients. However, the prognostic value of TLS in gastrointestinal stromal tumors (GIST) is unknown. We evaluated the prognostic value of TLS using two independent GIST cohorts. Pathological examinations identified TLS in 44.9% of patients in our discovery cohort (DC). TLS was significantly associated with smaller tumor size (P = .011), relatively well morphological classification (P < .001), lower NIH classification (P < .001), lower recurrence (P = .005), longer survival time (P < .001) and lower imatinib resistance (P = .006). Kaplan-Meier curves showed that TLS was remarkably associated with favorable survival (P = .0002) and recurrence (P = .0015) time. In addition, the presence of KIT mutations and the absence of TLS suggested worst prognosis both in terms of overall survival (OS) (P = .0029) and time to recurrence (TTR) (P = .0150), while the presence of PDGFRA mutations and TLS suggested optimal prognosis for OS and TTR. Multivariate analyzes demonstrated that TLS was an independent prognostic factor for OS (HR:0.180, P = .002) and TTR (HR:0.412, P = .023). These results were confirmed using our validation cohort. Multiplexed immunohistochemistry staining was used to determine the composition of TLS. Therapies designed to target TLS may be a novel therapeutic strategy for GIST patients with imatinib resistance.


Subject(s)
Gastrointestinal Stromal Tumors , Tertiary Lymphoid Structures , Gastrointestinal Stromal Tumors/drug therapy , Humans , Imatinib Mesylate/therapeutic use , Neoplasm Recurrence, Local , Prognosis
17.
Small ; 16(15): e1902603, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31389177

ABSTRACT

Sodium-ion batteries (SIBs) are promising for large-scale energy storage systems and carbon materials are the most likely candidates for their electrodes. The existence of defects in carbon materials is crucial for increasing the sodium storage ability. However, both the reversible capacity and efficiency need to be further improved. Functionalization is a direct and feasible approach to address this issue. Based on the structural changes in carbon materials produced by surface functionalization, three basic categories are defined: heteroatom doping, grafting of functional groups, and the shielding of defects. Heteroatom doping can improve the electrochemical reactivity, and the grafting of functional groups can promote both the diffusion-controlled bulk process and surface-confined capacitive process. The shielding of defects can further increase the efficiency and cyclic stability without sacrificing reversible capacity. In this Review, recent progresses in the ways to produce surface functionalization are presented and the related impact on the physical and chemical properties of carbon materials is discussed. Moreover, the critical issues, challenges, and possibilities for future research are summarized.

18.
Oncol Lett ; 18(6): 6443-6450, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807167

ABSTRACT

Desmoid tumors (DTs), derived from the abdomen, are a type of rare and aggressive borderline tumor exhibiting high recurrence and malignant potential. The aim of the present study was to investigate the clinicopathological and molecular characteristics of abdominal DT in a Chinese population and to provide clues for selecting the optimal treatment strategy for different types of abdominal DT. The clinicopathological data of 15 consecutive patients with DT was collected. Matched fresh-frozen tumor tissues and peripheral blood samples were used to detect mutations of adenomatous polyposis coli gene (APC), ß-catenin (CTNNB1) and MutY DNA glycosylase (MUTYH) using Sanger sequencing. Pearson's test was conducted to analyze the differences between sporadic DT and familial adenomatous polyposis (FAP) associated with DT. Time to progress (TTP) and overall survival curves were estimated using the Kaplan-Meier method and compared using the log-rank test. A review of the patient clinicopathological characteristics revealed that FAP-associated DT exhibited a higher rate of abdominal surgery history (P=0.011), with no significant differences in any other characteristics. Sequencing revealed that mutations in the APC, CTNNB1 and MUTYH genes were common in DT, and only one patient harbored no mutations in these genes. Survival analyses revealed that patients with FAP exhibited shorter TTP (P=0.030). Log-rank test demonstrated a tendency towards shorter TTP in the cases where an R2 resection was performed (P=0.072) and a tendency towards poor prognosis in the cases of DT associated with FAP (P=0.087). In conclusion, Abdominal DTs were prone to occur in patients with FAP with a history of abdominal surgery. Mutations in the APC, CTNNB1 and MUTYH genes were detected in patients with DTs. To the best of our knowledge, this is the first study of abdominal DT occurrence in patients with MUTYH-associated FAP. The prognosis of DT associated with FAP may be worse compared with that of sporadic DT.

19.
Chemistry ; 23(65): 16586-16592, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28921698

ABSTRACT

As a promising candidate for large-scale energy storage systems, sodium-ion batteries (SIBs) are experiencing a rapid development. Organic conjugated carboxylic acid anodes not only have tailorable electrochemical properties but also are easily accessible. However, the low stability and electrical conductivity hamper their practical applications. In this study, disodium terephthalate (Na2 TP), the most favorable organic conjugated carboxylic acid anode material for SIBs, was proposed to integrate with graphene oxide (GO) by an anti-solvent precipitation process, which ensures the uniform and tight coating of GO on the Na2 TP surface. GO is electrochemically reduced during the first several cycles of the electrochemical measurement, which buffers the volume change and improves the electrical conductivity of Na2 TP, resulting in a better cyclic and rate performance. The incorporation of only 5 wt % GO onto Na2 TP leads to a reversible capability of 235 mA h g-1 after 100 cycles at a current rate of 0.1 C, which is the best among the state of the art organic anodes for SIBs. The one-step synthesis together with the low costs of the raw materials show a promise for the scalable preparation of anode materials for practical SIBs.

20.
Biomed Res Int ; 2014: 684325, 2014.
Article in English | MEDLINE | ID: mdl-24987699

ABSTRACT

The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 µM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA (P < 0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P > 0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P < 0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P < 0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P < 0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB.


Subject(s)
Chylomicron Remnants/metabolism , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Lipoproteins, VLDL/metabolism , Protein Biosynthesis/drug effects , Caco-2 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...