Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Sleep Breath ; 28(1): 319-329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726500

ABSTRACT

BACKGROUND: Exosomes are involved in cell-to-cell communication in numerous diseases including cardiovascular diseases, neurological diseases. Little attention has been dedicated to exosomal circular RNAs in obstructive sleep apnea (OSA)-related cardiovascular diseases. The aim of this study was to explore the role of exosomal circular RNA ZNF292 (circZNF292) on AC16 cells exposure to intermittent hypoxia (IH). METHODS: Exosome release inhibitor GW4869 was used to examine the effect of exosomes on IH-induced AC16 cells apoptosis. The expression of exosomal circZNF292 was detected by qRT-PCR in AC16 cells exposure to IH, and a luciferase reporter assay was conducted to confirm the connection between circZNF292 and miR-146a-5p. Exosomal circZNF292 was stably transfected with short hairpin RNAs (shRNAs) against circZNF292 and co-cultured with AC16 cells. The expression of miR-146a-5p and apoptosis-related protein was then measured to evaluate the effect of exosomal circZNF292. RESULTS: We found that IH contributed to the AC16 cells apoptosis, and the administration of GW4869 increased the apoptosis of cardiomyocytes when exposed to IH. The expression of exosomal circZNF292 decreased and miR-146a-5p increased significantly in AC16 cells exposed to IH compared to normoxic conditions. Bioinformatics analysis predicted a circZNF292/miR-146a-5p axis in IH-induced cardiomyocytes apoptosis. The dual-luciferase reporter system validated the direct interaction of circZNF292 and miR-146a-5p. Knockdown of circZNF292 increased the expressions of miR-146a-5p and accelerated the AC16 cardiomyocytes apoptosis. CONCLUSIONS: The findings of this study suggested a novel mechanism by which exosomes transmit intrinsic regulatory signals to the myocardium through the exosomal circZNF292/miR-146a-5p axis. This finding highlights the potential of targeting this pathway as a therapeutic approach for treating cardiovascular diseases associated with OSA.


Subject(s)
Aniline Compounds , Benzylidene Compounds , Cardiovascular Diseases , MicroRNAs , Sleep Apnea, Obstructive , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/pharmacology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Myocytes, Cardiac/metabolism , Cardiovascular Diseases/metabolism , Apoptosis/genetics , Hypoxia/genetics , Hypoxia/metabolism , Luciferases/metabolism , Luciferases/pharmacology , Sleep Apnea, Obstructive/metabolism , Carrier Proteins , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology
2.
Sleep Breath ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775619

ABSTRACT

PURPOSE: Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. Although micro-ribonucleic acid-210-3p (miR-210-3p) is correlated with hypoxia-induced tumor development, its role in the relationship between IH and tumor function remains poorly understood. The present work focused on elucidating the molecular mechanism through which miR-210-3p drives tumor progression under IH. METHODS: MiR-210-3p levels were quantified within tumor samples from patients with lung adenocarcinoma who had or did not have OSA. Correlations between miR-210-3p and polysomnographic variables were analyzed. For in vitro experiments, miR-210-3p was inhibited or overexpressed via transfection under IH conditions. Cell viability, growth, invasion and migration assays were carried out. For in vivo modeling of IH using mouse xenografts, a miR-210-3p antagomir was intratumorally injected, tumor biological behaviors were evaluated, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry and western blot were carried out for detecting miR-210-3p and E2F transcription factor 3 (E2F3) expression. RESULTS: For patients with lung adenocarcinoma and OSA, high miR-210-3p levels showed positive relation to polysomnographic variables, such as oxygen desaturation index, apnea-hypopnea index, and proportion of total sleep time with oxygen saturation in arterial blood < 90%. IH enhanced tumor viability, proliferation, migration, and invasion, downregulated E2F3 expression, and increased miR-210-3-p levels. miR-210-3p overexpression induced similar changes. These changes were reversed by miR-210-3p inhibition in vitro or miR-210-3p antagomir through intratumoral injection in vivo. CONCLUSIONS: IH-induced tumor development is driven through miR-210-3p by E2F3 suppression. MiR-210-3p represents a potential therapeutic target among patients with concomitant cancer and OSA.

4.
Sleep Breath ; 27(5): 2069-2076, 2023 10.
Article in English | MEDLINE | ID: mdl-36856923

ABSTRACT

PURPOSE: Ferroptosis is reported to be involved in the chronic intermittent hypoxia (CIH)-related liver damage in vivo. Nuclear factor E2-related factor 2 (Nrf2) has an essential role in the regulation of ferroptosis. This study tested the hypothesis that intermittent hypoxia (IH) could lead to hepatocyte ferroptosis in vitro and the function of Nrf2 in IH-induced hepatocyte ferroptosis. METHODS: BRL-3A cells (rat liver cells) were exposed to normoxia or IH. The protocol of IH consisted of 32 cycles of 60-min hypoxic exposure with 30-min reoxygenation phase (nadir of 1% oxygen to peak of 20% oxygen). Ferroptosis was evaluated by cell viability, iron concentration, lipid reactive oxygen species (ROS), protein content of ferritin heavy chain (FTH1), and glutathione peroxidase 4 (GPX4). Both ferrostatin-1 (a ferroptosis inhibitor) and Nrf2 interfering RNA were applied to treat BRL-3A cells, respectively. RESULTS: IH exposure induced ferroptosis in BRL-3A cells with decreased cell viability and increased total iron content and lipid ROS levels. The protein contents of GPX4 and FTH1 in IH group were markedly lower than that in normoxic control. Ferroptosis inhibitor ferrostatin-1 alleviated IH-induced ferroptosis in BRL-3A cells. IH treatment enhanced expression of Nrf2, and Nrf2 knockdown augmented IH-induced ferroptosis in BRL-3A cells. CONCLUSIONS: The results revealed that Nrf2 played a protective role during IH-induced ferroptosis in BRL-3A cells. The finding provides a therapeutic target for obstructive sleep apnea-related liver injury.


Subject(s)
Ferroptosis , Animals , Rats , Hypoxia/metabolism , Iron/metabolism , Lipids , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxygen/metabolism , Reactive Oxygen Species/metabolism
5.
BMC Med Genomics ; 16(1): 50, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894962

ABSTRACT

PURPOSE: Circular RNAs (circRNAs) are recently identified as a class of non-coding RNAs that participate in the incidence of acute myocardial infarction (AMI). However, circRNAs expression pattern in obstructive sleep apnea (OSA) with AMI remains unknown. The aim was to investigate circRNAs expression alteration in serum exosomes derived from OSA patients with AMI. METHODS: The serum exosomal circRNAs profile of three healthy subjects, three OSA without AMI and three OSA with AMI were analyzed using high-throughput sequencing. Bioinformatic analyses were carried out to assess potential core circRNAs and functional analyses were conducted to study biological functions. RESULTS: Compared to healthy subjects, there were 5225 upregulated and 5798 downregulated circRNAs in exosomes from OSA with AMI patients. And our study also identified 5210 upregulated and 5813 downregulated circRNAs in OSA with AMI patients compared to OSA without AMI. The differential expression of 2 circRNAs (hsa_circRNA_101147, hsa_circRNA_101561) between healthy subjects and OSA without AMI, and 4 circRNAs (hsa_circRNA_101328, hsa_circRNA_104172, hsa_circRNA_104640, hsa_circRNA_104642) between healthy subjects and OSA with AMI were confirmed by qRT-PCR. In addition, we demonstrated that miR-29a-3p targeted hsa_circRNA_104642 directly. CONCLUSIONS: This study demonstrated that there were a number of dysregulated circRNAs in exosomes from OSA with AMI patients, which might be effectively served as a promising diagnostic biomarker and therapeutic targets.


Subject(s)
RNA, Circular , RNA , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , RNA/metabolism
6.
J Neurol Surg A Cent Eur Neurosurg ; 84(6): 584-587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35144296

ABSTRACT

BACKGROUND: Various high-energy tasks in the construction industry can lead to craniocerebral injuries. Construction industry-associated penetrating craniocerebral injuries due to metal foreign bodies have unique characteristics. However, no norms exist for removing metal foreign bodies and preventing secondary trauma. This study aimed to explore the characteristics and treatment of construction industry-associated penetrating craniocerebral injuries due to metal foreign bodies. METHODS: Data of patients who suffered from penetrating injuries due to metal foreign bodies and were treated in the Zhongshan People's Hospital from 2001 to 2021 were collected based on the causes of injuries to explore disease characteristics and therapeutic effects. RESULTS: A total of six patients with penetrating craniocerebral injuries due to metal foreign bodies, who underwent surgeries, were included in the study. Five patients recovered well after the surgery, and one patient died. In four patients, intracranial infection complicated the course after surgery, and two patients had delayed intracranial hematoma. CONCLUSION: Patients with construction industry-associated penetrating craniocerebral injuries due to metal foreign bodies are prone to coma and intracranial vascular injuries. Early surgical removal and prevention of intracranial infection are key to achieving good therapeutic effects.


Subject(s)
Construction Industry , Craniocerebral Trauma , Foreign Bodies , Head Injuries, Penetrating , Wounds, Gunshot , Humans , Craniocerebral Trauma/surgery , Hematoma , Wounds, Gunshot/surgery , Foreign Bodies/surgery , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/surgery
7.
Sleep Breath ; 27(1): 129-136, 2023 03.
Article in English | MEDLINE | ID: mdl-35195829

ABSTRACT

BACKGROUND: Although the long noncoding RNAs (lncRNAs) expression profiles have been observed in previous study, the biological functions and underlying mechanisms of lncRNAs in OSA-related cardiac injury have not been elucidated. In the present study, we investigated a novel lncRNA, lncRNA XR_595552, and evaluated its role in intermittent hypoxia (IH)-induced damage in H9c2 cardiomyocytes. METHODS: H9c2 cells were exposed to IH condition. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to measure the expression changes of lncRNA XR_595552 in H9c2 cells stimulated by IH. H9c2 cells were subjected to IH after transfection. CCK-8 was used to evaluate cell viability, and apoptosis was analyzed by Western blotting. Additionally, the regulatory relationship between lncRNA XR_595552 and PI3K/AKT was tested by RT-qPCR and Western blot. RESULTS: IH significantly induced injury in H9c2 cells (inhibited cell viability and promoted cell apoptosis). lncRNA XR_595552 was upregulated in a cell model of IH. Inhibition of lncRNA XR_595552 protected H9c2 cells against IH-induced damage, as the viability was increased, Bax, Caspase-9, and Caspase-3 were downregulated, and Bcl-2 was upregulated. More interestingly, lncRNA XR_595552 downregulation activated the PI3K/AKT pathway. Blocking the PI3K/AKT signal pathway by the use of LY294002 eliminated the myocardioprotective effects of lncRNA XR_595552 in H9c2 cells under IH condition. CONCLUSIONS: The results show that lncRNA XR_595552, a novel lncRNA, may play a protective role in attenuating IH-induced injury in cardiomyocytes via a regulating PI3K/AKT pathway. The findings suggest that this lncRNA could serve as a therapeutic target to treat OSA-related cardiovascular disorders.


Subject(s)
RNA, Long Noncoding , Sleep Apnea, Obstructive , Humans , RNA, Long Noncoding/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Myocytes, Cardiac , Hypoxia
8.
Eur Arch Otorhinolaryngol ; 280(4): 2025-2032, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36481978

ABSTRACT

PURPOSE: The association between obstructive sleep apnea (OSA) and cancer risks gaining more and more attention. Data on the association between OSA and lung cancer risk are limited. This study is to investigate whether a link exists between low-dose computed tomography (LDCT) scanning of the chest findings, carcinoembryonic antigen (CEA) and OSA in patients suspected of OSA. METHODS: The cross-sectional study included patients aged 18 years or older who underwent continuous nocturnal polysomnography at our sleep center between February 2019 and November 2020. All subjects underwent chest LDCT and CEA. Patients with an apnea-hypopnea index (AHI) of ≥ 15/h were classified as clinically significant OSA group, whereas patients with an AHI < 15/h were classified as control group. RESULTS: A total of 277 patients were enrolled in the study. 176 patients were categorized into the OSA group, while 101 patients were categorized into the control group. There is no relationship between any OSA-related parameter and presence of lung nodule or presence of ≥ 6 mm lung nodule in the binary logistic regression analysis. OSA group demonstrated a significant higher value of CEA than control group. Stepwise multiple linear regression analysis showed that lowest O2 saturation (ß = - 0.256, p < 0.001), smoking status (ß = 0.156, p = 0.007) and age (ß = 0.153, p = 0.008) were independent predictors of elevated CEA. CONCLUSIONS: OSA was independently related to the elevated of serum CEA level, but not with presence of pulmonary nodule or ≥ 6 mm pulmonary nodule in LDCT. Further well-designed longitudinal studies with pathology available are needed to identify the association between OSA and risk of lung cancer.


Subject(s)
Lung Neoplasms , Sleep Apnea, Obstructive , Humans , Carcinoembryonic Antigen , Cross-Sectional Studies , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Lung
9.
Sleep Breath ; 27(3): 1005-1011, 2023 06.
Article in English | MEDLINE | ID: mdl-35951213

ABSTRACT

PURPOSE: Obstructive sleep apnea (OSA) is related to increased risk of cardiovascular disease. Ferroptosis is a form of programmed cell death characterized by iron overload and plays critical roles in myocardial injury. This study aimed to investigate the role of ferroptosis in intermittent hypoxia (IH)-induced myocardial injury involving endoplasmic reticulum stress (ERS). METHODS: AC16 human cardiomyocytes were exposed to IH or normoxia conditions. Mice were randomly grouped as follows: normal control (NC), IH, ferrostatin-1 + IH (FIH), and N-acetylcysteine + IH (AIH). The mRNA levels of GPX4, xCT, FTH1, and FACL4 in AC16 cells were detected by qRT-PCR. The protein levels of GPX4, xCT, NOX4, ATF4, CHOP, Bcl-2, and Bax in myocardial tissue were detected by Western blot analysis. RESULTS: The mRNA expression levels of GPX4 and xCT in AC16 cells were significantly lower in IH group than that of NC group. In IH mice, myocardial tissues were injured accompanied by increased level of ferroptosis and ERS. Inhibition of ferroptosis and treatment of N-acetylcysteine reduced ERS and myocardial injury in mice exposed to IH. In addition, compared to ferrostatin-1, N-acetylcysteine exerted a greater effect in relieving IH-induced myocardial damage and ERS. CONCLUSIONS: Ferroptosis was involved in IH-related myocardial injury accompanied by the activation of ERS. Inhibition of ferroptosis and acetylcysteine treatment alleviated IH-related myocardial injury, which may be a potential target for therapeutic approaches to OSA-induced myocardial injury.


Subject(s)
Ferroptosis , Sleep Apnea, Obstructive , Humans , Mice , Animals , Acetylcysteine/pharmacology , Hypoxia , Endoplasmic Reticulum Stress , Sleep Apnea, Obstructive/complications
10.
Nat Sci Sleep ; 14: 2143-2149, 2022.
Article in English | MEDLINE | ID: mdl-36507312

ABSTRACT

Purpose: Liver injury in non-obese obstructive sleep apnea (OSA) patients has received much attention in recent years. This study aimed to investigate risk factors of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in non-obese patients with OSA. Methods: A retrospective study was conducted in the Sleep Center of the First Affiliated Hospital of Fujian Medical University. All consecutive non-obese patients with suspected sleep apnea admitted to the center were enrolled. The clinical characteristics of patients with simple snoring and with different severity OSA were compared. Multivariate logistic regression models were used to analyze the risk factors of NAFLD and liver fibrosis. Results: A total of 410 patients were enrolled. The levels of triglyceride, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased with the aggravation of OSA (All p<0.05). Among non-obese patients with OSA, 17 (5%) were diagnosed with liver fibrosis and 228 (65%) with NAFLD; Apnea­hyponea index (AHI) was an independent predictor for NAFLD and liver fibrosis [OR (95% CI): 1.02 (1.00-1.03), 1.04 (1.00-1.07), both p<0.05]; hypertriglyceridemia was an independent predictor for NAFLD [OR (95% CI): 1.13 (1.12-1.99), p<0.05]. Conclusion: NAFLD and liver fibrosis were common in non-obese OSA patients and the severity of OSA was an independent risk factor for them.

11.
Front Physiol ; 13: 972407, 2022.
Article in English | MEDLINE | ID: mdl-36187780

ABSTRACT

Intermittent hypoxia (IH) is a prominent feature of obstructive sleep apnea (OSA) which is increasingly recognized as a key risk factor for liver injury. Circular RNAs (circRNAs) has been suggested to act as a regulator of multiple biological processes. However, there is no study evaluating circRNAs alterations and potential role of circRNAs in OSA-related liver injury. The present study aimed to investigate circRNA expression profiles in vitro model of IH-induced liver injury, as well as potential functional characterization of the differentially expressed circRNAs (DE circRNAs). BRL-3A cells were exposed to IH or normoxia. Cell apoptosis and cell viability were evaluated using flow cytometry and cell counting kit-8, respectively. The expression profile of circRNAs was depicted by circRNA sequencing. The selected circRNAs were verified by quantitative real-time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses were employed to predict DE circRNAs functions. The circRNA-miRNA-mRNA regulatory network was constructed. IH treatment caused cell injury in BRL-3A cells. 98 circRNAs were identified as being dysregulated in IH-treated BRL-3A cells. Among them, 58 were up-regulated and 40 were down-regulated. Go and KEGG analyses suggested that the DE circRNAs were predominantly enriched in the biological process such as positive regulation of NF-kappaB transcription factor activity and pathways such as circadian entrainment, Wnt signaling pathway, MAPK signaling pathway, and protein export. 3 up-regulated circRNAs and 3 down-regulated circRNAs with high number of back-splicing sites were chosen for qRT-PCR validation and were consistent with the sequencing data. CircRNA1056 and circRNA805 were predicted to interact with microRNAs that might thereby regulate downstream genes. The study characterized a profile of dysregulated circRNAs in IH-induced BRL-3A cell injury. DE circRNAs may play vital roles in the pathophysiology of IH-induced liver injury. Our findings provide preliminary support for further research in mechanisms and a new theory for the pathogenesis of OSA-related liver injury.

12.
BMC Pulm Med ; 22(1): 261, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778740

ABSTRACT

PURPOSE: While asthma comorbidities are associated with higher health care utilisation, lower quality of life and poorer asthma control, the impact of asthma comorbidities on hospitalisation for asthma exacerbation (H-AX) remains less recognised. We aim to analyse the impact of asthma comorbidities on H-AX. METHODS: Based on a national survey on asthma control and disease perception (CARN 2015 study), we analysed the impact of comorbidities on annual incidence and frequency of H-AX in China. Information on demographic characteristics, asthma comorbidities and annual incidence and frequency of H-AX were presented in this study. RESULTS: Among 3875 ambulatory asthma patients, 75.9% (2941/3875) had comorbidities, and 26.4% (1017/3858) experienced H-AX during past year. After adjusting for confounding factors such as demographic data, smoking status and asthma control, COPD [OR = 2.189, 95% CI (1.673, 2.863)] and coronary heart disease [OR = 1.387, 95% CI (1.032, 1.864)] were associated with higher annual incidence, while allergic rhinitis [OR = 0.692, 95% CI (0.588, 0.815)] was associated with lower annual incidence, of H-AX. In terms of frequency, allergic rhinitis [OR = 1.630, 95% CI (1.214, 2.187)], COPD [OR = 1.472, 95% CI (1.021, 2.122)] and anxiety [OR = 2.609, 95% CI (1.051, 6.477)] showed statistically significant correlation with frequent H-AX. CONCLUSIONS: COPD and coronary heart disease were associated with higher annual incidence, while allergic rhinitis was associated with lower annual incidence of H-AX. Allergic rhinitis, COPD and anxiety were associated with frequent H-AX. Comorbidities may have an important role in the risk and frequency of annual hospitalisations due to asthma exacerbation. The goal of asthma control should rely on a multi-disciplinary treatment protocol.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Rhinitis, Allergic , Asthma/complications , Asthma/epidemiology , Hospitalization , Humans , Incidence , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Quality of Life , Rhinitis, Allergic/epidemiology
13.
Sleep Breath ; 26(4): 2015-2024, 2022 12.
Article in English | MEDLINE | ID: mdl-35006556

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is a risk factor for atherosclerosis. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is strongly linked to endothelial cell functions. However, the function of MALAT1 in intermittent hypoxia (IH) associated vascular endothelial injury has not been explored yet. The current study makes great attempts to investigate the function of MALAT1 in IH-induced endothelial injury and its latent control network. METHODS: To mimic the effect of OSA, we cultured the human umbilical vein endothelial cells (HUVECs) under intermittent hypoxia. Western blot was applied to measure the expression level of associated proteins including capase-3, Bax, Bcl-2 while qRT-PCR was used in measurement of MALAT1 and miR-142-3p. Cell Counting Kit-8 (CCK-8) was carried out in assessing cell viability. Dual-luciferase reporter assay was applied to verify the relationships among high mobility group box (HMGB)1 and MALAT1, miR-142-3p. RESULTS: IH treatment significantly reduced cell viability but enhanced cell apoptosis in HUVECs. Concomitantly, MALAT1 was significantly upregulated in IH-treated HUVECs. Further experiment showed that MALAT1 knockdown augmented IH-induced injury of HUVECs. In addition, it was confirmed by dual-luciferase reporter assay that MALAT1 interacted with miR-142-3p directly. Besides, inhibition of miR-142-3p alleviated damage induced by MALAT1 knockdown in IH-treated HUVECs. Finally, miR-142-3p interacted with HMGB1 directly and inhibition of HMGB1 protein expression mediated by MALAT1 knockdown was reversed by miR-142-3p inhibitor. CONCLUSIONS: IH resulted in increased expression of MALAT1 in HUVECs. MALAT1 knockdown augmented IH-induced injury of HUVECs. MALAT1 exerted its effects on IH-treated HUVECs via miR-142-3p/HMGB1.


Subject(s)
HMGB1 Protein , MicroRNAs , RNA, Long Noncoding , Sleep Apnea, Obstructive , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , MicroRNAs/genetics , Apoptosis/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Hypoxia/metabolism , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/metabolism
14.
Allergy Asthma Immunol Res ; 14(1): 85-98, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34983109

ABSTRACT

PURPOSE: As stated in the Global Initiative for Asthma, there are still some asthmatic patients who have not achieved asthma control. Mobile is a useful tool for asthma management. We aimed to compare the advantages of mobile management with traditional management in improving adherence and control of asthma. METHODS: In this prospective, multicentre, randomized, controlled and parallel-group study, we enrolled patients with poor adherence and uncontrolled asthma at 32 hospitals in 28 provinces in China. Patients were randomly assigned to the mobile management or traditional management groups for 12 months. The primary endpoint was the proportion of patients with good adherence (Medication Adherence Report Scale for Asthma [MARS-A] score ≥ 45) for 6 months. This study is registered at ClinicalTrials.gov (NCT02917174). RESULTS: Between April 2017 and April 2018, 923 patients were eligible for randomization (mobile group, n = 461; traditional group, n = 462). Dropout was 84 (18.2%) in the mobile management group and 113 (24.4%) patients in the traditional management group. The proportion of patients with good adherence was significantly higher in the mobile management group than in the traditional management group (66.0% vs. 58.99%, P = 0.048). The mobile management group showed higher mean MARS-A score (at 1, 6, 9, and 12 months) and asthma control test scores (at 6 and 9 months), and lower total lost rate to follow-up within 12 months than the traditional management group. CONCLUSIONS: Mobile asthma management can improve adherence and asthma control compared to traditional management. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02917174.

15.
Cell Death Discov ; 8(1): 42, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091561

ABSTRACT

Long noncoding RNAs (lncRNAs) participate in various biological processes and cardiovascular diseases. Recently, a novel lncRNA XR_596701 was found to be differentially expressed in obstructive sleep apnea (OSA)-induced myocardial tissue compared to normal myocardial tissues. However, the pathological effect and regulatory mechanism of XR_596701 in intermittent hypoxia (IH)-mediated cardiomyocytes damage have not been studied. The subcellular localization of XR_596701 was determined by fluorescence in situ hybridization (FISH). Gene expressions of XR_596701 and miR-344b-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in IH-induced H9c2 cells. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) staining assay. Cell apoptosis was detected by Hoechst 33342/PI staining and immunofluorescence (IF). Apoptotic protein of H9c2 cells was measured by western blot. The direct interaction between XR_596701 and miR-344b-5p as well as miR-344b-5p and Fas apoptotic inhibitory molecule 3 (FAIM3) were examined using dual-luciferase reporter assay. The significance of XR_596701 and miR-344b-5p on cell proliferation and apoptosis was evaluated by using gain-of-function and loss-of-function approaches. XR_596701 was upregulated, while miR-344b-5p downregulated in IH-induced H9c2 cells. Functionally, suppression of XR_596701 and overexpression of miR-344b-5p inhibited cell proliferation and promoted cell apoptosis in H9c2 cells. The roles of XR_596701 were achieved by sponging miR-344b-5p. And the function of miR-344b-5p was reversed by targeting FAIM3. Additionally, FAIM3 mediated IH-induced H9c2 cells damage by XR_596701. XR_596701 was serve as a novel lncRNA that indicated protective roles on proliferation and apoptosis of IH-induced H9c2 cells through the miR-344b-5p/FAIM3 axis.

16.
Sleep Breath ; 26(2): 559-566, 2022 06.
Article in English | MEDLINE | ID: mdl-34148174

ABSTRACT

PURPOSE: Prior reports have examined the relationship between obstructive sleep apnea (OSA) and the mortality rate of lung cancer. However, the findings remain controversial. The present meta-analysis was performed to assess the relationship between OSA and increased risk of mortality in patients with lung cancer. METHODS: PubMed, Web of Science, and Embase were systematically searched for the correlative studies. Data were analyzed and pooled to evaluate odds ratios (ORs) of lung cancer mortality related to OSA. RESULTS: From 249 identified studies, 3 met inclusion criteria and were analyzed, including 67 patients with lung cancer and comorbid OSA and 45 patients with lung cancer and no OSA. The meta-analysis indicated that OSA was not significantly correlated with mortality rate in lung cancer (OR = 2.005, 95% CI = 0.703 to 5.715, z = 1.30, p = 0.193). There was no significant publication bias according to Begg's tests (p = 0.296) and Egger's tests (p = 0.097). CONCLUSION: This meta-analysis suggests that OSA is not significantly correlated with the mortality rate in lung cancer.


Subject(s)
Lung Neoplasms , Sleep Apnea, Obstructive , Comorbidity , Humans , Odds Ratio , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology
17.
Medicine (Baltimore) ; 100(42): e27443, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34678873

ABSTRACT

ABSTRACT: Intraventricular hemorrhage is a serious intracerebral hemorrhagic disease with high mortality and poor prognosis. This retrospective study designed to investigate the therapeutic effect of transcortical approach surgery versus extraventricular drainage (EVD) on patients with intraventricular hemorrhage.Patients with intraventricular hemorrhage in Zhongshan City People's Hospital from January 01, 2014 to June 01, 2019 were retrospectively examined. They were divided into transcortical approach surgery groups and EVD groups to analyze the clinical characteristics and prognosis.A total of 96 patients were enrolled in the study (24 in the transcortical approach surgery group and 72 in the EVD group). The efficiency of postoperative operation was 15/19 in the transcortical approach surgery group and 24/48 in the EVD group (P = .012). The Glasgow Outcome Scale was 3.63 ±â€Š1.27 in the transcortical approach surgery group and 2.80 ±â€Š1.87 in the EVD group (P = .049). The postoperative residual blood volume was 9.62 ±â€Š3.64 mL in the transcortical approach surgery group and 33.60 ±â€Š3.53 mL in the EVD group (P < .001). The incidence of hydrocephalus after the operation was 1/23 in the transcortical approach surgery group and 19/53 in the EVD group. The 30-day postoperative mortality was 16/56 in the EVD group and 1/23 in the transcortical approach surgery group. The transcortical approach surgery group was significantly better compared with the EVD group.This study showed that the transcortical approach for ventricular hemorrhage compared with EVD improved the hematoma clearance rate, shortened catheterization time, reduced the incidence of postoperative hydrocephalus, decreased patient mortality, led to a better prognosis, and reduced complications of hydrocephalus.


Subject(s)
Cerebral Hemorrhage/surgery , Cerebral Ventricles/pathology , Drainage/methods , Neurosurgical Procedures/methods , Adult , Aged , Cerebral Hemorrhage/mortality , Female , Glasgow Outcome Scale , Humans , Male , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/mortality , Postoperative Complications/epidemiology , Prognosis , Retrospective Studies
18.
Front Physiol ; 12: 751206, 2021.
Article in English | MEDLINE | ID: mdl-34658933

ABSTRACT

Background: Cigarette smoking is a major risk factor for bronchoalveolar epithelial cell (BAEC) injury. Understanding the relevant pathogenesis is important for the treatment of cigarette smoke-related chronic airway diseases such as chronic obstructive pulmonary disease. Methods: In this study, BAECs were cultured in 5% cigarette smoke extract (CSE) or regular culture medium for 24 h. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analysis was performed on DEGs. Co-treated BAECs with 5% CSE and the ferroptosis inhibitor, ferrostatin-1 was applied to observe the role of ferroptosis. Results: In the CSE group, 210 upregulated genes and 159 downregulated genes were identified compared with the control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were related to oxidative stress and ferroptosis. Ferroptosis-related genes were further verified by qRT-PCR. The mRNA level of GPX4 decreased; the mRNA levels of ACSL4, FTH1 and SLC7A11 increased (p < 0.05). Pretreatment with the ferroptosis inhibitor ferrostatin-1 mitigated CSE-induced ROS accumulation and inflammatory mediator expression in BAECs (p < 0.05). Conclusion: CSE treatment altered ferroptosis-related gene expression patterns in cultured BAECs. Inhibition of ferroptosis reduced the inflammatory response of CSE-treated BAECs. These data provide a better understanding of the underlying molecular mechanisms of CSE-related lung injury.

19.
Sleep Breath ; 25(4): 2241-2250, 2021 12.
Article in English | MEDLINE | ID: mdl-33751408

ABSTRACT

PURPOSE: Increasing medical researche shows that endothelial dysfunction is one of the important causes of various cardiovascular diseases related to chronic intermittent hypoxia (CIH). This study aimed to identify target proteins in CIH-related vascular dysfunction. METHODS: A comparative proteomics analysis was conducted in aortic samples of rats treated with CIH and controls with normoxia. Bioinformatics analyses were performed to determine the potential roles of major proteins. The expressions of target proteins were measured by western blotting. Cell apoptotic ratio was detected by flow cytometer. RESULTS: A total of 3,593 proteins in aortic tissues of rats were quantified. Ninety-two upregulated proteins and 468 downregulated proteins were identified when the cutoff of fold change was set at 1.5 (CIH vs. normoxia). The results of bioinformatics analysis revealed that the differentially expressed proteins were enriched in the processes of energy metabolism and lipid metabolism. The reduced expression level of peroxisome proliferator-activated receptor γ (PPARγ) protein was identified in thoracic aortic tissues of rats with CIH by proteomics analysis and western blotting. In intermittent hypoxia-treated rat aortic endothelial cells, PPARγ protein levels were reduced, and the apoptosis rate and caspase-3 and Bax protein levels were markedly elevated. Importantly, forced expression of PPARγ by rosiglitazone in intermittent hypoxia-treated rat aortic endothelial cells not only attenuated caspase-3 and Bax protein levels but also reduced the rate of apoptosis. CONCLUSION: PPARγ is critical in endothelial dysfunction of rats with CIH. Additional studies on these differentially expressed proteins associated with CIH-related endothelial dysfunction are necessary.


Subject(s)
Aorta/metabolism , Apoptosis/physiology , Endothelium, Vascular/metabolism , Hypoxia/metabolism , PPAR gamma/metabolism , Animals , Computational Biology , Disease Models, Animal , Male , Proteomics , Rats , Rats, Sprague-Dawley
20.
Aging (Albany NY) ; 13(6): 8068-8077, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33582657

ABSTRACT

OBJECTIVE: miRNAs play critical roles in the regulation of many cardiovascular diseases. However, its role and potential mechanism in cardiac injury caused by obstructive sleep apnea (OSA) remain poorly elucidated. In the present study, we aimed to investigate the effects of miR-3574 on cardiomyocyte injury under intermittent hypoxia (IH). RESULTS: We confirmed that IH inhibited cell viability, induced cell apoptosis and suppressed miR-3574 expression in the H9c2. miR-3574 overexpression could ameliorate the effects of IH on the cell viability and cell apoptosis in the H9c2. Axin1 was a target gene of miR-3574, and miR-3574 overexpression reduced the expression of Axin1. miR-3574 could inhibit the IH-induced cardiomyocyte injury via downregulating Axin1. However, Axin1 could partially reverse these effects of miR-3574. CONCLUSION: Our study first reveals that miR-3574 could alleviate IH-induced cardiomyocyte injury by targeting Axin1, which may function as a novel and promising therapy target for OSA-associated cardiovascular diseases. METHODS: H9c2 were exposed to IH condition. CCK-8 assay was applied to determine cell viability of H9c2. qRT-PCR was conducted to measure the expression level of mRNA and miRNA. Western blot assay was then performed to detect the protein levels. Finally, we used dual-luciferase reporter assay identify the potential target of miR-3574.


Subject(s)
Axin Protein/metabolism , Cell Hypoxia/physiology , Hypoxia/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction/physiology , Animals , Cell Line , Cell Survival/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...