Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 11(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36078892

ABSTRACT

Genetic polymorphism of nitric oxide synthase (NOS) can cause reduction of nitric oxide (NO) levels and may be associated with osteonecrosis of the femoral head (ONFH). However, the association of coagulopathy and NOS polymorphism in ONFH patients has not been confirmed. Between November 2005 and October 2013, 155 patients with ONFH were recruited in the study of serum coagulation profiles and NOS polymorphism. Another 43 patients who had dysplasia, osteoarthritis, or trauma of hip joints were included as controls. PCR genotyping for the analysis of NOS 27-bp polymorphism in intron 4 was performed. The analysis of coagulation profiles included fibrinogen, fibrinogen degradation product (FDP), protein S, protein C, and anti-thrombin III. The results showed that 27-bp repeat polymorphism was significantly associated with ONFH (OR 4.32). ONFH patients had significantly higher fibrinogen, FDP, protein S, and anti-thrombin III levels than that of the controls. The incidence of coagulopathy was significantly higher in ONFH patients (73.2%), and the odds ratio increased from 2.38 to 7.33 when they had 27-bp repeat polymorphism. Patients with hyperfibrinogenemia, elevated FDP levels, and with the risk factor of alcohol or steroid use had significantly higher risks of bilateral hip involvement. This study demonstrated the presence of NOS polymorphism, and a resultant reduction in NO production was associated with coagulopathy, which in turn might contribute to higher risks of bilateral ONFH. Our data suggests that checking NOS polymorphism and coagulopathy may provide a new avenue in managing ONFH.

2.
J Bone Joint Surg Am ; 104(Suppl 2): 2-12, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35389901

ABSTRACT

BACKGROUND: Reduced nitric oxide synthase (NOS) activity and decreased reparative potentials in stem cells may be involved in the pathogenesis of osteonecrosis of the femoral head (ONFH), but the underlying mechanism is not clear. Ankyrin, a cytoskeletal protein, can promote NOS expression and many cellular functions when it interacts with the CD44 receptors on the stem cells. This study investigated whether ankyrin is involved in the pathogenesis of ONFH. MATERIALS AND METHODS: Bone marrow stem cells (BMSCs) from ONFH patients were compared with cells from patients with proximal femoral fracture and BMSC cell lines (PT-2501, Lonza, NC, USA). Differences in the expression levels and downstream signal pathway of ankyrin-Akt-eNOS in BMSCs were studied between ONFH and control. The involvement of ankyrin in the signal cascade, cell proliferation, and differentiation were further investigated by silencing ankyrin using small interfering (si)RNA. RESULTS: We found the basal mRNA levels of ankyrin and CD44 in BMSCs from the ONFH group were significantly lower as compared with those from the control group. The signal transduction of CD44-ankyrin-Akt-eNOS was significantly repressed in the ONFH group as compared with the control group after hyaluronic acid treatment. Knockdown of ankyrin by siRNA could attenuate the eNOS signaling as well as the BMSCs proliferation and osteogenic differentiation. The proliferation ability and osteogenic differentiation potential of the BMSCs from the ONFH group were significantly reduced as compared with the control group, but they can be enhanced to the baseline levels of the control group by hyaluronic acid treatment. CONCLUSION: The aberrant eNOS signaling, reduced cell proliferation, and osteogenic differentiation potential in BMSCs from ONFH patients are associated with the decreased ankyrin expression. CLINICAL RELEVANCE: Altered signal transduction, proliferation, and osteogenic differentiation ability in BMSCs may be involved in the pathogenesis of ONFH. These need further studies especially in BMSC-based cell therapy.


Subject(s)
Femur Head Necrosis , Mesenchymal Stem Cells , Ankyrins/metabolism , Cell Differentiation , Cell Proliferation , Femur Head/pathology , Femur Head Necrosis/pathology , Humans , Hyaluronic Acid , Osteogenesis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
3.
Int Orthop ; 42(7): 1605-1614, 2018 07.
Article in English | MEDLINE | ID: mdl-29700584

ABSTRACT

PURPOSE: MicroRNAs (miRNAs) are associated with various pathologic conditions and can serve as diagnostic or therapeutic biomarkers. This study tried to identify the differentially expressed miRNAs to predict the possible pathomechanisms involved in osteonecrosis of the femoral head (ONFH). METHODS: We compared the peripheral blood miRNAs in 46 patients with ONFH and 85 healthy controls by microarray and droplet digital polymerase chain reaction (ddPCR). Putative interacted networks between the differentially responded miRNAs were analyzed by web-based bioinformatics prediction tools. RESULTS: Microarray identified 51 differentially expressed miRNAs with at least twofold change (upregulation in 34 and downregulation in 17), and the results were validated by ddPCR using six selected miRNAs. Bioinformatics genetic network analysis focusing on the six miRNAs found the upregulated miR-18a and miR-19a are associated with angiogenesis after induction of ischemia; the upregulated miR-138-1 can inhibit osteogenic differentiation of mesenchymal stem cells; the most targeted genes, p53 and SERBP1, are associated with hypoxia and hypofibrinolysis. CONCLUSIONS: This study combined the miRNA analysis with the bioinformatics and predicts that hypoxia, inhibited osteogenesis of stem cells, and dysregulated angiogenesis might be orchestrated through the miRNA interacting circuits in the pathogenesis of ONFH.


Subject(s)
Femur Head Necrosis/blood , Hypoxia/genetics , MicroRNAs/blood , Neovascularization, Pathologic/genetics , Osteogenesis/genetics , Adult , Cell Differentiation/genetics , Computational Biology/methods , Female , Femur Head Necrosis/genetics , Gene Regulatory Networks , Humans , Hypoxia/physiopathology , Male , Mesenchymal Stem Cells/physiology , MicroRNAs/metabolism , Microarray Analysis/methods , Middle Aged , Neovascularization, Pathologic/physiopathology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...