Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Microbiol ; 72(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37910007

ABSTRACT

Introduction. Respiratory tract infection, which is associated with high morbidity and mortality, occurs frequently in children. At present, the main diagnostic method is culture. However, the low pathogen detection rate of the culture approach prevents timely and accurate diagnosis. Fortunately, next-generation sequencing (NGS) can compensate for the deficiency of culture, and its application in clinical diagnostics has become increasingly available.Gap Statement. Targeted NGS (tNGS) is a platform that can select and enrich specific regions before data enter the NGS pipeline. However, the performance of tNGS in the detection of respiratory pathogens and antimicrobial resistance genes (ARGs) in infections in children is unclear.Aim and methodology. In this study, we estimated the performance of tNGS in the detection of respiratory pathogens and ARGs in 47 bronchoalveolar lavage fluid (BALF) specimens from children using conventional culture and antimicrobial susceptibility testing (AST) as the gold standard.Results. RPIP (Respiratory Pathogen ID/AMR enrichment) sequencing generated almost 500 000 reads for each specimen. In the detection of pathogens, RPIP sequencing showed targeted superiority in detecting difficult-to-culture bacteria, including Mycoplasma pneumoniae. Compared with the results of culture, the sensitivity and specificity of RPIP were 84.4 % (confidence interval 70.5-93.5 %) and 97.7 % (95.9 -98.8%), respectively. Moreover, RPIP results showed that a single infection was detected in 10 of the 47 BALF specimens, and multiple infections were detected in 34, with the largest number of bacterial/viral coinfections. Nevertheless, there were also three specimens where no pathogen was detected. Furthermore, we analysed the drug resistance genes of specimens containing Streptococcus pneumoniae, which was detected in 25 out of 47 specimens in the study. A total of 58 ARGs associated with tetracycline, macrolide-lincosamide-streptogramin, beta-lactams, sulfonamide and aminoglycosides were identified by RPIP in 19 of 25 patients. Using the results of AST as a standard, the coincidence rates of erythromycin, tetracycline, penicillin and sulfonamides were 89.5, 79.0, 36.8 and 42.1 %, respectively.Conclusion. These results demonstrated the superiority of RPIP in pathogen detection, particularly for multiple and difficult-to-culture pathogens, as well as in predicting resistance to erythromycin and tetracycline, which has significance for the accurate diagnosis of pathogenic infection and in the guidance of clinical treatment.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Child , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Sulfanilamide , Tetracycline , Erythromycin
2.
BMC Infect Dis ; 22(1): 326, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365081

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate different pretreatment, extraction, amplification, and library generation methods for metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) and to develop an efficient procedure for the simultaneous detection of DNA and RNA pathogens. METHODS: We generated thirteen mock CSF samples with four representative pathogens of encephalitis. Each sample was subjected to ten different methods by varying sample pretreatment/nucleic acid extraction (microbial DNA, total DNA, total NA, total RNA, Whole Transcriptome Amplification (WTA)) and library generation (Illumina or NEB). Negative extraction controls (NECs) were used for each method variation. RESULTS: We found that the quality of mNGS sequencing reads was higher from the NEB kit for library generation. Microbial DNA and total RNA increased microbial deposition by depleting the host DNA. Methods total NA and total RNA can detect gram-positive, gram-negative, RNA and DNA pathogens. We applied mNGS, including total NA and NEB library generation, to CSF samples from five patients diagnosed with infectious encephalitis and correctly determined all pathogens identified in clinical etiological tests. CONCLUSIONS: Our findings suggested that total nucleic acid extraction combined with NEB library generation is the most effective mNGS procedure in CSF pathogen detection. The optimization of positive criteria and databases can improve the specificity and sensitivity of mNGS diagnosis. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1800015425 (29/03/2018), https://www.chictr.org.cn/edit.aspx?pid=26292&htm=4 .


Subject(s)
Metagenomics , RNA , DNA , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Sensitivity and Specificity
3.
Mol Immunol ; 112: 360-368, 2019 08.
Article in English | MEDLINE | ID: mdl-31261021

ABSTRACT

Hemocyanin is primarily a respiratory copper-containing glycoprotein present in the hemolymph of mollusks and arthropods. Recently, hemocyanin has attracted huge research interest due to its multifunctionality and polymorphism. Most previous immune-related studies on shrimp hemocyanin have focused on the C-terminal. Moreover, we previously reported that the C-terminal domain of Litopenaeus vannamei hemocyanin possesses single nucleotide polymorphisms (SNPs), but little is known about the molecular diversity of the N-terminal domain. In the current study, diversity within the N-terminal domain of L. vannamei hemocyanin (LvHMC-N) was explored using bioinformatics and molecular biology techniques as well as immune challenge. Twenty-five LvHMC-N variants were identified using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and DNA sequencing, with multiple sequence alignment showing that the 25 variants shared 87%-99 % sequence homology with LvHMC (AJ250830.1). In different shrimp individuals and different shrimp tissues (i.e., hemocytes, stomach, muscle and hepatopancreas), the LvHMC-N variants were expressed differently. Pathogen challenge could modulate the molecular diversity of LvHMC-N, as three LvHMC-Nr variants (LvHMC-Nr1, LvHMC-Nr2 and LvHMC-Nr3) were identified by sequencing following Vibrio parahaemolyticus challenge. Most importantly, recombinant proteins of these three variants (rLvHMC-Nr1, rLvHMC-Nr2 and rLvHMC- Nr3) had relatively high in vitro agglutinative activities against V. parahaemolyticus, Vibrio alginolyticus and Streptoccocus iniae. Our present data indicates that the N-terminus of L. vannamei hemocyanin also possess molecular diversity, which seems to be associated with immune resistance to pathogenic infections.


Subject(s)
Hemocyanins/genetics , Hemocyanins/immunology , Immunity/genetics , Immunity/immunology , Penaeidae/genetics , Penaeidae/immunology , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Base Sequence , Cloning, Molecular/methods , Computational Biology/methods , Hemocytes/immunology , Hemocytes/microbiology , Hemolymph/immunology , Hemolymph/microbiology , Hepatopancreas/immunology , Hepatopancreas/microbiology , Sequence Alignment , Sequence Analysis, DNA , Vibrio Infections/genetics , Vibrio Infections/immunology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/immunology
4.
Dev Comp Immunol ; 98: 99-107, 2019 09.
Article in English | MEDLINE | ID: mdl-31051195

ABSTRACT

White spot syndrome, which is caused by white spot syndrome virus (WSSV), is a highly contagious disease of penaeid shrimp. However, there is currently incomplete understanding of the infection mechanism and pathogenesis of WSSV. In this study, a novel gene of a previously uncharacterized WSSV response protein (LvWRP) in Litopenaeus vannamei was identified and characterized. The LvWRP gene has an open reading frame (ORF) of 879 bp encoding a putative protein of 292 amino acids. Sequence analysis revealed that LvWRP shared 24.9% identity with an uncharacterized protein of Penaeus monodon nudivirus. Real-time qPCR analysis showed that LvWRP was ubiquitously expressed in shrimp tissues, with transcript levels induced in hemocytes upon immune challenge with Vibrio parahaemolyticus, Streptoccocus iniae, lipopolysaccharide (LPS), and WSSV. In addition, RNA interference-mediated knockdown of LvWRP followed by WSSV challenge revealed significant decrease in the transcript levels of WSSV IE1 and VP28 genes coupled with a reduction in WSSV copies in shrimp hemocytes. Moreover, depletion of LvWRP followed by WSSV challenge significantly increased the transcript levels of Vago4 and Vago5 as well as increased the phosphorylation of STAT, while hemocytes apoptosis in terms of caspase 3/7 activity was decreased. These results suggest that LvWRP is important for WSSV replication in shrimp, and therefore one of the vital host factors in WSSV infection.


Subject(s)
Arthropod Proteins/immunology , Hemocytes/immunology , Penaeidae/immunology , White spot syndrome virus 1/immunology , Amino Acid Sequence , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Base Sequence , Cloning, Molecular , Gene Expression Profiling/methods , Hemocytes/metabolism , Hemocytes/virology , Penaeidae/genetics , Penaeidae/virology , RNA Interference , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid , Signal Transduction/genetics , Vibrio parahaemolyticus/immunology , Vibrio parahaemolyticus/physiology , White spot syndrome virus 1/physiology
5.
Fish Shellfish Immunol ; 76: 187-195, 2018 May.
Article in English | MEDLINE | ID: mdl-29518557

ABSTRACT

Although vertebrate immunity has been well studied for the past decades, invertebrate immunity was much less explored. One possible reason was that in vitro culture system was not well established. In this study, Litopenaeus vannamei was applied as an invertebrate study model. Primary culture conditions for L. vannamei hemocytes were optimized to get relatively quiescent state cells. LPS was used as an immune stimulator and the responses of primary cultured hemocytes were transcriptomically analyzed. Our results showed that around 1,600 genes were upregulated and 800 genes were downregulated from LPS treated hemocytes. The altered genes could be classified into three categories: upregulated, downregulated, upregulated and then downregulated. Further qPCR validation showed that ubiquitin, ubiquitin-conjugating enzyme E2 C, ubiquitin-conjugating enzyme H1 and ubiquitin-conjugating enzyme H5b in ubiquitin-proteasome pathway were upregulated, cytochrome c oxidase 1, NADH dehydrogenase 1, Inosine-5'-monophosphate dehydrogenase 1b and phospholipid-transporting ATPase IA in mitochondria oxidation phosphorylation were downregulated. Our results showed that L. vannamei hemocyte inflammation responses share a lot of similarities with mammalian macrophage inflammation responses.


Subject(s)
Gene Expression Regulation/immunology , Hemocytes/immunology , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Penaeidae/genetics , Penaeidae/immunology , Animals , Gene Expression Profiling , Hemocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...