Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Transl Lung Cancer Res ; 11(12): 2539-2566, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36636408

ABSTRACT

Background: Platinum-based chemotherapy (PC) and immunotherapy plus platinum-based chemotherapy (IPC) remain the first-line treatment for advanced NSCLC. But only a minority patients benefit from PC, and existing biomarkers, such as PD-L1, have been shown to be defective in predicting the efficacy of IPC. Highlighting the need to identify novel biomarkers for the efficacy of PC and IPC. DNA damage repair (DDR) mutations are known to predict response to PC in solid tumors. However, the predictive value of DDR in PC and IPC of NSCLC remains unclear. Methods: Patients diagnosed with advanced or metastatic NSCLC were retrospectively included if they underwent next generation sequencing prior to starting treatment. Primary endpoints were to explore whether DDR mutations (DDRmut) are associated with clinical outcomes of PC and IPC. Secondary end point were to explore the association between DDRmut and the choice to add immunotherapy to chemotherapy, and the impact of different DDR pathways on efficacy in PC and IPC. Results: DDRmut showed a strong association with tumor mutation burden-high (TMB-H) versus DDR wild-type (DDRwt) and higher rates of PD-L1 TPS ≥50% positivity. In 63 patients treated with PC, ORRs were 15.38% and 2.86% for DDRmut and DDRwt subgroup (P=0.1536), and DCRs were 88.46% and 45.72% (P=0.00097) at 6 months after PC. The DDRmut patients had significantly improved median PFS (mPFS) and median overall survival (mOS) than DDRwt group (mPFS: 7.6 vs. 3.9 months, HR =1.93, 95% CI: 1.09 to 3.14, P=0.0220. mOS: 29.9 vs. 20.7 months, HR =2.31, 95% CI: 1.09 to 4.9, P=0.0250). Moreover, among 37 patients treated with IPC, ORRs were 45% and 11.76% for DDRmut and DDRwt patients (P=0.0365), and the DCRs were 95% and 70.58% (P=0.0752), respectively at 6 months after IPC. The DDRmut patients had significantly improved mPFS compared to the DDRwt group (19.5 vs. 4.5 months, HR =3.28, 95% CI: 1.53 to 9.56, P=0.0022). In DDRmut group, mPFS of IPC recipients was significantly better than that of PC recipients (19.5 vs. 7.6 months, HR =2.09, 95% CI: 0.98 to 4.42, P=0.050). Conclusions: There is potential for DDR to serve as a positive predictor of PC and IPC in advanced NSCLC patients.

2.
Front Physiol ; 12: 724470, 2021.
Article in English | MEDLINE | ID: mdl-34483973

ABSTRACT

Cardiac fibrosis is evident even in the situation without a significant cardiomyocyte loss in diabetic cardiomyopathy and a high glucose (HG) level independently activates the cardiac fibroblasts (CFs) and promotes cell proliferation. Mitochondrial respiration and glycolysis, which are key for cell proliferation and the mitochondria-associated membranes (MAMs), are critically involved in this process. However, the roles and the underlying mechanism of MAMs in the proliferation of HG-induced CFs are largely unknown. The proliferation and apoptosis of CFs responding to HG treatment were evaluated. The MAMs were quantified, and the mitochondrial respiration and cellular glycolytic levels were determined using the Seahorse XF analyzer. The changes of signal transducer and activator of transcription 3 (STAT3) and mitofusin-2 (MFN2) in responding to HG were also determined, the effects of which on cell proliferation, MAMs, and mitochondrial respiration were assessed. The effects of STAT3 on MFN2 transcription was determined by the dual-luciferase reporter assay (DLRA) and chromatin immunoprecipitation (CHIP). HG-induced CFs proliferation increased the glycolytic levels and adenosine triphosphate (ATP) production, while mitochondrial respiration was inhibited. The MAMs and MFN2 expressions were significantly reduced on the HG treatment, and the restoration of MFN2 expression counteracted the effects of HG on cell proliferation, mitochondrial respiration of the MAMs, glycolytic levels, and ATP production. The mitochondrial STAT3 contents were not changed by HG, but the levels of phosphorylated STAT3 and nuclear STAT3 were increased. The inhibition of STAT3 reversed the reduction of MFN2 levels induced by HG. The DLRA and CHIP directly demonstrated the negative regulation of MFN2 by STAT3 at the transcription levels via interacting with the sequences in the MFN2 promoter region locating at about -400 bp counting from the start site of transcription. The present study demonstrated that the HG independently induced CFs proliferation via promoting STAT3 translocation to the nucleus, which switched the mitochondrial respiration to glycolysis to produce ATP by inhibiting MAMs in an MFN2-depression manner.

3.
Front Oncol ; 11: 731572, 2021.
Article in English | MEDLINE | ID: mdl-34540698

ABSTRACT

The efficacy of first-and second-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in NSCLC patients with the EGFR L861Q mutation has been studied previously. However, there is little evidence on the efficacy of osimertinib in NSCLC patients with uncommon mutations. Here, we report the case of a 68-year-old man with advanced NSCLC with concurrent EGFR L861Q mutation as well as TP53 and RB1 mutations. The patient was treated with osimertinib as first-line therapy and achieved a remarkable progression-free survival of 15 months. His symptoms were significantly alleviated and the dose was well tolerated. The findings of the present study indicate that osimertinib might be a good treatment option for NSCLC patients with the L861Q mutation.

4.
Chin Med ; 16(1): 13, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33478536

ABSTRACT

BACKGROUND: Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. METHODS: By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. RESULTS: 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. CONCLUSIONS: As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.

5.
Medicine (Baltimore) ; 100(1): e23875, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33429746

ABSTRACT

BACKGROUND: Acneiform eruptions from epidermal growth factor receptor tyrosine kinase inhibitors is a frequent adverse event in non-small cell lung cancer patients but the efficacy of its treatment including antibiotics, corticosteroid, sunscreen is still poorly understood. METHODS: Eight electronic databases (PubMed, EMBASE, ClinicalTrials.gov, etc) will be searched from inception to April 2020. Risk of bias of randomized controlled trials will be assessed in terms of the Risk of Bias 2 (RoB 2) tool. Eligible randomized controlled trials will be enrolled for a Bayesian network meta-analysis using R software. RESULTS: This study is still ongoing and the results will be submitted and published in a peer-reviewed scientific journal. CONCLUSION: We hope the results of this study will provide reliable evidence for the management of acneiform due to epidermal growth factor receptor tyrosine kinase inhibitors for non-small cell lung cancer. ETHICS AND DISSEMINATION: Ethical approval is not applicable for this study is based on published trials. PROTOCOL REGISTRATION NUMBER: CRD42020206724.


Subject(s)
Acneiform Eruptions/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Clinical Protocols , ErbB Receptors/analysis , Humans , Meta-Analysis as Topic , Systematic Reviews as Topic
6.
Complement Ther Med ; 47: 102167, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31780021

ABSTRACT

OBJECTIVE: To systematically review and evaluate the effectiveness of Chinese herbal medicine (CHM) therapy for epidermal growth factor receptor inhibitor (EGFRI)-induced skin rash in patients with malignancy. METHODS: The electronic databases of Medline, PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure, VIP Chinese Sci-tech Journal, Wan Fang, and Chinese Biomedicine were searched from their inception to 31 st September 2018. Randomized controlled trials (RCTs) investigating the effectiveness of CHM in improving EGFRI-induced skin rash were analyzed by Review Manager 5.3. RESULTS: Twenty-three eligible RCTs with 1392 participants were identified and divided into four subgroups according to different treatment rules of Traditional Chinese Medicine (TCM) and different controls. CHM (dispel wind, clear heat, and eliminate dampness), the representative formula Xiao Feng San, is more effective than western medicine in improving and curing skin rash(RR,95%CI: 1.46,1.26-1.70 and 1.65,1.24-2.20); CHM (nourish yin, clear heat, and remove toxin for eliminating blood stasis), the representative formula Yang Fei Xiao Zhen Tang, is more effective than western medicine in improving skin rash(RR,95%CI: 1.45,1.10-1.92). CHM (clear lung and purge heat, cool blood, and remove toxic substance) is more effective in improving and curing skin rash, compared with the western medicine group (RR,95%CI: 1.42,1.21-1.67 and 2.43,1.23-4.81) or the blank control group(RR,95%CI:2.37,1.21-4.63 and 2.98,1.20-7.41). The side effects of CHM are all mild and tolerable. Sensitivity analysis indicates that the results of the study are stable. The asymmetry funnel plots described that publication bias of this research may exist. CONCLUSION: The limited evidence suggests that CHM exhibits clinical effectiveness and good safety on the treatment of EGFRI-induced skin rash. Large-sample RCTs are required to further determine the effectiveness of CHM.


Subject(s)
Antineoplastic Agents/adverse effects , Drugs, Chinese Herbal/therapeutic use , ErbB Receptors/antagonists & inhibitors , Exanthema/chemically induced , Exanthema/drug therapy , Neoplasms/drug therapy , Humans , Medicine, Chinese Traditional , Randomized Controlled Trials as Topic
7.
Mol Cell ; 76(6): 857-871.e9, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31586547

ABSTRACT

The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Gluconates/metabolism , Neoplasms/enzymology , Protein Phosphatase 2/metabolism , A549 Cells , AMP-Activated Protein Kinase Kinases , Animals , Cell Proliferation , Enzyme Activation , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , HEK293 Cells , HT29 Cells , Humans , K562 Cells , MCF-7 Cells , Mice, Nude , Neoplasms/genetics , Neoplasms/pathology , PC-3 Cells , Pentose Phosphate Pathway , Protein Binding , Protein Phosphatase 2/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Ribulosephosphates/metabolism , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tumor Burden , src-Family Kinases/metabolism
8.
Cancer Discov ; 9(6): 756-777, 2019 06.
Article in English | MEDLINE | ID: mdl-30862724

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is important for reductive carboxylation in cancer cells, and the IDH1 R132H mutation plays a pathogenic role in cancers including acute myeloid leukemia (AML). However, the regulatory mechanisms modulating mutant and/or wild-type (WT) IDH1 function remain unknown. Here, we show that two groups of tyrosine kinases (TK) enhance the activation of mutant and WT IDH1 through preferential Y42 or Y391 phosphorylation. Mechanistically, Y42 phosphorylation occurs in IDH1 monomers, which promotes dimer formation with enhanced substrate (isocitrate or α-ketoglutarate) binding, whereas Y42-phosphorylated dimers show attenuated disruption to monomers. Y391 phosphorylation occurs in both monomeric and dimeric IDH1, which enhances cofactor (NADP+ or NADPH) binding. Diverse oncogenic TKs phosphorylate IDH1 WT at Y42 and activate Src to phosphorylate IDH1 at Y391, which contributes to reductive carboxylation and tumor growth, whereas FLT3 or the FLT3-ITD mutation activates JAK2 to enhance mutant IDH1 activity through phosphorylation of Y391 and Y42, respectively, in AML cells. SIGNIFICANCE: We demonstrated an intrinsic connection between oncogenic TKs and activation of WT and mutant IDH1, which involves distinct TK cascades in related cancers. In particular, these results provide an additional rationale supporting the combination of FLT3 and mutant IDH1 inhibitors as a promising clinical treatment of mutant IDH1-positive AML.See related commentary by Horton and Huntly, p. 699.This article is highlighted in the In This Issue feature, p. 681.


Subject(s)
Isocitrate Dehydrogenase/genetics , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Disease Management , Humans , Isocitrate Dehydrogenase/chemistry , Janus Kinase 2/metabolism , Models, Biological , NADP/metabolism , Neoplasms/pathology , Phosphorylation , Protein Binding , Protein Multimerization , fms-Like Tyrosine Kinase 3/genetics
9.
Cancer Cell ; 34(2): 315-330.e7, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30033091

ABSTRACT

Platinum-based chemotherapeutics represent a mainstay of cancer therapy, but resistance limits their curative potential. Through a kinome RNAi screen, we identified microtubule-associated serine/threonine kinase 1 (MAST1) as a main driver of cisplatin resistance in human cancers. Mechanistically, cisplatin but no other DNA-damaging agents inhibit the MAPK pathway by dissociating cRaf from MEK1, while MAST1 replaces cRaf to reactivate the MAPK pathway in a cRaf-independent manner. We show clinical evidence that expression of MAST1, both initial and cisplatin-induced, contributes to platinum resistance and worse clinical outcome. Targeting MAST1 with lestaurtinib, a recently identified MAST1 inhibitor, restores cisplatin sensitivity, leading to the synergistic attenuation of cancer cell proliferation and tumor growth in human cancer cells and patient-derived xenograft models.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , MAP Kinase Kinase 1/physiology , Microtubule-Associated Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-raf/physiology , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Enzyme Activation , Female , Humans , Mice
10.
Mol Cell ; 69(6): 923-937.e8, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29547721

ABSTRACT

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfates/toxicity , Dietary Supplements/toxicity , Melanoma/chemically induced , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/chemically induced , Animals , Antinematodal Agents/pharmacology , Casein Kinase II/metabolism , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , GTP Phosphohydrolases/genetics , HEK293 Cells , HT29 Cells , Humans , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, Nude , Mice, Transgenic , NIH 3T3 Cells , Nuclear Proteins/genetics , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Transcription Factors/genetics , Xenograft Model Antitumor Assays
11.
J Biol Chem ; 292(24): 10142-10152, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28468827

ABSTRACT

Contributions of metabolic changes to cancer development and maintenance have received increasing attention in recent years. Although many human cancers share similar metabolic alterations, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Using an RNAi-based screen targeting the majority of the known metabolic proteins, we recently found that oncogenic BRAFV600E up-regulates HMG-CoA lyase (HMGCL), which converts HMG-CoA to acetyl-CoA and a ketone body, acetoacetate, that selectively enhances BRAFV600E-dependent MEK1 activation in human cancer. Here, we identified HMG-CoA synthase 1 (HMGCS1), the upstream ketogenic enzyme of HMGCL, as an additional "synthetic lethal" partner of BRAFV600E Although HMGCS1 expression did not correlate with BRAFV600E mutation in human melanoma cells, HMGCS1 was selectively important for proliferation of BRAFV600E-positive melanoma and colon cancer cells but not control cells harboring active N/KRAS mutants, and stable knockdown of HMGCS1 only attenuated colony formation and tumor growth potential of BRAFV600E melanoma cells. Moreover, cytosolic HMGCS1 that co-localized with HMGCL and BRAFV600E was more important than the mitochondrial HMGCS2 isoform in BRAFV600E-expressing cancer cells in terms of acetoacetate production. Interestingly, HMGCL knockdown did not affect HMGCS1 expression levels, whereas HMGCS1 knockdown caused a compensating increase in HMGCL protein level because of attenuated protein degradation. However, this increase did not reverse the reduced ketogenesis in HMGCS1 knockdown cells. Mechanistically, HMGCS1 inhibition decreased intracellular acetoacetate levels, leading to reduced BRAFV600E-MEK1 binding and consequent MEK1 activation. We conclude that the ketogenic HMGCS1-HMGCL-acetoacetate axis may represent a promising therapeutic target for managing BRAFV600E-positive human cancers.


Subject(s)
Colonic Neoplasms/enzymology , Hydroxymethylglutaryl-CoA Synthase/metabolism , MAP Kinase Kinase 1/metabolism , Melanoma/enzymology , Neoplasm Proteins/metabolism , Oxo-Acid-Lyases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Acetoacetates/metabolism , Amino Acid Substitution , Animals , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cytosol/enzymology , Cytosol/metabolism , Enzyme Activation , Enzyme Stability , Female , Humans , Hydroxymethylglutaryl-CoA Synthase/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Synthase/genetics , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , MAP Kinase Kinase 1/chemistry , Melanoma/metabolism , Melanoma/pathology , Mice, Nude , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Transplantation , Oxo-Acid-Lyases/antagonists & inhibitors , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Proteolysis , Proto-Oncogene Proteins B-raf/genetics , RNA Interference , Tumor Burden
12.
Cell Metab ; 25(2): 358-373, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28089569

ABSTRACT

Lifestyle factors, including diet, play an important role in the survival of cancer patients. However, the molecular mechanisms underlying pathogenic links between diet and particular oncogenic mutations in human cancers remain unclear. We recently reported that the ketone body acetoacetate selectively enhances BRAF V600E mutant-dependent MEK1 activation in human cancers. Here we show that a high-fat ketogenic diet increased serum levels of acetoacetate, leading to enhanced tumor growth potential of BRAF V600E-expressing human melanoma cells in xenograft mice. Treatment with hypolipidemic agents to lower circulating acetoacetate levels or an inhibitory homolog of acetoacetate, dehydroacetic acid, to antagonize acetoacetate-BRAF V600E binding attenuated BRAF V600E tumor growth. These findings reveal a signaling basis underlying a pathogenic role of dietary fat in BRAF V600E-expressing melanoma, providing insights into the design of conceptualized "precision diets" that may prevent or delay tumor progression based on an individual's specific oncogenic mutation profile.


Subject(s)
Dietary Fats/adverse effects , Ketone Bodies/metabolism , Melanoma/pathology , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , 3-Hydroxybutyric Acid/pharmacology , Acetoacetates/administration & dosage , Acetoacetates/blood , Acetoacetates/pharmacology , Animals , Cell Proliferation/drug effects , Female , Humans , Hypolipidemic Agents/pharmacology , Injections, Intraperitoneal , Melanoma/blood , Mice , Mice, Nude , Pyrones/chemistry , Pyrones/pharmacology , Xenograft Model Antitumor Assays
13.
Mol Cell ; 64(5): 859-874, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27867011

ABSTRACT

Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Mitochondria/enzymology , Pyruvate Dehydrogenase Complex/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/enzymology , Neoplasms/pathology , Oligopeptides/genetics , Oligopeptides/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism
14.
Nat Chem ; 7(12): 968-79, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587712

ABSTRACT

Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.


Subject(s)
Cell Proliferation/drug effects , Copper/metabolism , Metallochaperones/antagonists & inhibitors , Molecular Chaperones/antagonists & inhibitors , Neoplasms/metabolism , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Copper Transport Proteins , Drug Discovery , Gene Knockdown Techniques , Humans , Metallochaperones/chemistry , Metallochaperones/genetics , Metallochaperones/metabolism , Mice , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Oxidative Stress/drug effects , Sequence Alignment , Xenograft Model Antitumor Assays
15.
Nat Cell Biol ; 17(11): 1484-96, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26479318

ABSTRACT

The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Lipogenesis , Neoplasms/metabolism , Pentose Phosphate Pathway , Phosphogluconate Dehydrogenase/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Humans , Neoplasms/pathology , Oxidative Stress , Ribulosephosphates/metabolism , Signal Transduction
16.
Mol Cell ; 59(3): 345-358, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26145173

ABSTRACT

Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.


Subject(s)
Leukemia, Hairy Cell/metabolism , MAP Kinase Kinase 1/metabolism , Melanoma/metabolism , Octamer Transcription Factor-1/metabolism , Oxo-Acid-Lyases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction , Acetoacetates/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Mutation , Proto-Oncogene Proteins B-raf/genetics , Up-Regulation
17.
J Biol Chem ; 289(38): 26533-26541, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25104357

ABSTRACT

The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.


Subject(s)
Protein Processing, Post-Translational , Pyruvate Dehydrogenase (Lipoamide)/metabolism , 3T3 Cells , Amino Acid Substitution , Animals , Carbohydrate Metabolism , Catalytic Domain , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/physiology , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Oxidative Phosphorylation , Phosphorylation , Protein Binding , Pyruvate Dehydrogenase (Lipoamide)/chemistry , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvic Acid/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Tumor Burden , Tyrosine/metabolism
18.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25042803

ABSTRACT

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Histone Deacetylases/metabolism , Leukemia/pathology , Lung Neoplasms/pathology , Lysine/metabolism , Phosphogluconate Dehydrogenase/metabolism , Acetylation , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Leukemia/metabolism , Lung Neoplasms/metabolism , Mice , NADP/metabolism , Neoplasms, Experimental , Protein Binding/physiology , Protein Multimerization
19.
Curr Pharm Des ; 20(15): 2627-33, 2014.
Article in English | MEDLINE | ID: mdl-23859620

ABSTRACT

Lysine acetylation plays an essential role in metabolism. Five individual studies have identified that a large number of cellular proteins are potentially acetylated. Notably, almost every enzyme involved in central metabolic pathways such as glycolysis, the TCA cycle, fat acid metabolism, urea cycle and glycogen metabolism, is acetylated in response to nutrition fluctuations. Metabolic reprogramming is a critical hallmark during cancer development. Tumor cells preferentially utilize glycolysis instead of oxidative phosphorylation to produce more lactate and metabolic intermediates even under normal oxygen pressure, which was first noted as the "Warburg Effect". This review focuses on recent advances in the acetylation regulation of metabolic enzymes involved in the Warburg effect, the dysfunction of acetylation regulation in tumorigenesis and their potential role in cancer metabolism therapy.


Subject(s)
Neoplasms/metabolism , Acetylation , Animals , Glycolysis , Humans , Lipogenesis , Lysine/metabolism , Pyruvate Kinase/physiology , Reactive Oxygen Species/metabolism
20.
Mol Cell ; 51(4): 506-518, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23932781

ABSTRACT

Increased fatty acid synthesis is required to meet the demand for membrane expansion of rapidly growing cells. ATP-citrate lyase (ACLY) is upregulated or activated in several types of cancer, and inhibition of ACLY arrests proliferation of cancer cells. Here we show that ACLY is acetylated at lysine residues 540, 546, and 554 (3K). Acetylation at these three lysine residues is stimulated by P300/calcium-binding protein (CBP)-associated factor (PCAF) acetyltransferase under high glucose and increases ACLY stability by blocking its ubiquitylation and degradation. Conversely, the protein deacetylase sirtuin 2 (SIRT2) deacetylates and destabilizes ACLY. Substitution of 3K abolishes ACLY ubiquitylation and promotes de novo lipid synthesis, cell proliferation, and tumor growth. Importantly, 3K acetylation of ACLY is increased in human lung cancers. Our study reveals a crosstalk between acetylation and ubiquitylation by competing for the same lysine residues in the regulation of fatty acid synthesis and cell growth in response to glucose.


Subject(s)
ATP Citrate (pro-S)-Lyase/chemistry , ATP Citrate (pro-S)-Lyase/metabolism , Cell Proliferation , Fatty Acids/metabolism , Lung Neoplasms/pathology , ATP Citrate (pro-S)-Lyase/genetics , Acetylation , Animals , Blotting, Western , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Nude , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 2/genetics , Sirtuin 2/metabolism , Tumor Cells, Cultured , Ubiquitin/metabolism , Ubiquitin-Protein Ligases , Ubiquitination , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...