Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612218

ABSTRACT

Replacing cement with industrial by-products is an important way to achieve carbon neutrality in the cement industry. The purpose of this study is to evaluate the effect of eggshell powder on cement hydration properties, and to evaluate its feasibility as a substitute for cement. The substitution rates of eggshell powder are 0%, 7.5%, and 15%. Studying the heat of hydration and macroscopic properties can yield the following results. First: The cumulative heat of hydration based on each gram of cementitious material falls as the eggshell powder content rises. This is a result of the eggshell powder's diluting action. However, the cumulative heat of hydration per gram of cement rises due to the nucleation effect of the eggshell powder. Second: The compressive strengths of ES0, ES7.5, and ES15 samples at 28 days of age are 54.8, 43.4, and 35.5 MPa, respectively. Eggshell powder has a greater negative impact on the compressive strength. The effect of eggshell powder on the speed and intensity of ultrasonic waves has a similar trend. Third: As the eggshell powder content increases, the resistivity gradually decreases. In addition, we also characterize the microscopic properties of the slurry with added eggshell powder. X-ray Diffraction (XRD) shows that, as the age increases from 1 day to 28 days, hemicaboaluminate transforms into monocaboaluminate. As the content of the eggshell powder increases, FTIR analysis finds a slight decrease in the content of CSH. Similarly, thermogravimetric (TG) results also show a decrease in the production of calcium hydroxide. Although the additional nucleation effect of eggshell powder promotes cement hydration and generates more portlandite, it cannot offset the loss of portlandite caused by the decrease in cement. Last: A numerical hydration model is presented for cement-eggshell powder binary blends. The parameters of the hydration model are determined based on hydration heat normalized by cement mass. Moreover, the hydration heat until 28 days is calculated using the proposed model. The strength development of all specimens and all test ages can be expressed as an exponential function of hydration heat.

2.
Materials (Basel) ; 16(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37834521

ABSTRACT

Blended cement is commonly used for producing sustainable concretes. This paper presents an experimental study and an optimization design of a low-CO2 quaternary binder containing calcined clay, slag, and limestone using the response surface method. First, a Box-Behnken design with three influencing factors and three levels was used for the combination design of the quaternary composite cement. The lower limit of the mineral admixtures was 0%. The upper limits of slag, calcined clay, and limestone powder were 30%, 20%, and 10%, respectively. The water-to-binder ratio (water/binder) was 0.5. Experimental works to examine workability and strength (at 3 and 28 days) were performed for the composite cement. The CO2 emissions were calculated considering binder compositions. A second-order polynomial regression was used to evaluate the experimental results. In addition, a low-CO2 optimization design was conducted for the composite cement using a composite desirability function. The objectives of the optimization design were the target 28-day strength (30, 35, 40, and 45 MPa), target workability (160 mm flow), and low CO2 emissions. The trends of the properties of optimal combinations were consistent with those in the test results. In summary, the proposed optimization design can be used for designing composite cement considering strength, workability, and ecological aspects.

3.
Polymers (Basel) ; 15(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37631530

ABSTRACT

In recent years, there has been a growing utilization of lightweight engineered cementitious composites (LECC) for the reinforcement and restoration of contemporary building structures. This study focuses on the incorporation of zeolite, serving as an internal reservoir for moisture maintenance, and examines its impact on various performance indicators, including apparent density, compressive strength, tensile strength, and autogenous shrinkage. Additionally, the influence of zeolite on the tensile and ductile properties of LECC is elucidated with the aid of scanning electron microscopy (SEM). The findings reveal that the addition of zeolite enables the preservation of excellent mechanical properties of LECC while further reducing its density. Notably, the introduction of a substantial amount of zeolite leads to a decrease in matrix density, average crack width, and ultimate tensile strain. The ultimate tensile strain exceeds 8% to reach 8.1%, while the decrease in compressive and tensile strengths is marginal. Zeolite's internal curing capability facilitates the complete hydration of unhydrated cement, concurrently alleviating the autogenous shrinkage of LECC. Consequently, the durability and reliability of the material are enhanced. The ability of zeolite, with its porous framework structure, to significantly improve the ultimate tensile strain of the matrix can be attributed to the amplified occurrence of active defects and a shift in the pull-out mode of PE fibers from "pull-out" to "pull-through". This study presents a promising alternative material in the field of engineering, holding potential for diverse building and infrastructure projects, as it enhances their durability and reliability.

4.
Environ Sci Pollut Res Int ; 30(32): 78665-78679, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37277586

ABSTRACT

Ultra-high-performance concrete (UHPC) exhibits high compressive strength and good durability. However, owing to the dense microstructure of UHPC, carbonation curing cannot be performed to capture and sequester carbon dioxide (CO2). In this study, CO2 was added to UHPC indirectly. Gaseous CO2 was first converted into solid calcium carbonate (CaCO3) using calcium hydroxide, and the converted CaCO3 was then added to UHPC at 2, 4, and 6 wt% based on the cementitious material. The performance and sustainability of UHPC with indirect CO2 addition were investigated through macroscopic and microscopic experiments. The experimental results showed that the method used did not negatively affect the performance of UHPC. Compared with the control group, the early strength, ultrasonic velocity, and resistivity of UHPC containing solid CO2 improved to varying degrees. Microscopic experiments, such as heat of hydration and thermogravimetric analysis (TGA), demonstrated that adding captured CO2 accelerated the hydration rate of the paste. Finally, the CO2 emissions were normalized according to the compressive strength and resistivity at 28 days. The results indicated that the CO2 emissions per unit compressive strength and unit resistivity of UHPC with CO2 were lower than those of the control group.


Subject(s)
Calcium Carbonate , Carbon Dioxide , Calcium Hydroxide , Compressive Strength , Hot Temperature
5.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35055215

ABSTRACT

As an intelligent material, microcapsules can efficiently self-heal internal microcracks and microdefects formed in cement-based materials during service and improve their durability. In this paper, microcapsules of nano-CaCO3/ceresine wax composite shell encapsulated with E-44 epoxy resin were prepared via the melt condensation method. The core content, compactness, particle size distribution, morphologies, chemical structure and micromechanical properties of microcapsules were characterized. The results showed that the encapsulation ability, mechanical properties and compactness of microcapsules were further improved by adding nano-CaCO3 to ceresine wax. The core content, elastic modulus, hardness and weight loss rate (60 days) of nano-CaCO3/ceresine wax composite shell microcapsules (WM2) were 80.6%, 2.02 GPA, 72.54 MPa and 1.6%, respectively. SEM showed that WM2 was regularly spherical with a rough surface and sufficient space inside the microcapsules to store the healing agent. The incorporation of WM2 to mortar can greatly improve the self-healing ability of mortar after pre-damage. After 14 days of self-healing, the compressive strength recovery rate, proportion of harmful pores and chloride ion diffusion coefficient recovery rate increased to 90.1%, 45.54% and 79.8%, respectively. In addition, WM2 also has good self-healing ability for mortar surface cracks, and cracks with initial width of less than 0.35 mm on the mortar surface can completely self-heal within 3 days.

6.
Polymers (Basel) ; 13(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34771353

ABSTRACT

This paper presents the effects of alkali-activated blast furnace slag and fly ash (AASF) paste added with waste ceramic powder (WCP) on mechanical properties, weight loss, mesoscopic cracks, reaction products, and microstructure when exposed to 300, 600, and 900 °C. Using waste ceramic powder to replace blast furnace slag and fly ash, the replacement rate was 0-20%. The samples cured at 45 °C for 28 days were heated to 300, 600, and 900 °C to determine the residual compressive strength and weight loss at the relevant temperature. We evaluated the deterioration of the paste at each temperature through mesoscopic images, ultrasonic pulse velocity (UPV), thermogravimetric analysis (TG), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and with a scanning electron microscope (SEM). Relevant experimental results show that: (1) with the increase in waste ceramic powder content, the compressive strength of samples at various temperatures increased, and at 300 °C, the compressive strength of all the samples reached the highest value; (2) the residual weight increased with the increase in the content of the waste ceramic powder; (3) with a further increase in temperature, all the samples produced more mesoscopic cracks; (4) at each temperature, with the rise in waste ceramic powder content, the value of the ultrasonic pulse velocity increased; (5) the TG results showed that, as the content of waste ceramic powder increased, the formation of C-A-S-H gel and hydrotalcite decreased; (6) XRD and FTIR spectra showed that, at 900 °C, the use of waste ceramic powder reduced the formation of harmful crystalline phases; (7) the SEM image showed that, at 900 °C, as the content of waste ceramic powder increased, the compactness of the sample was improved. In summary, the addition of waste ceramic powder can improve the mechanical properties of the alkali-activated paste at high temperatures, reduce the occurrence of cracks, and make the microstructure denser.

7.
Materials (Basel) ; 14(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576637

ABSTRACT

In this study, the effect of biochar on the high temperature resistance of cementitious paste was investigated using multiple experimental methods. The weight loss, cracks, residual compressive strength, and ultrasonic pulse velocity (UPV) of biochar cementitious paste with 2% and 5% biochar exposed to 300, 550 and 900 °C were measured. The products and microstructures of biochar cementitious paste exposed to high temperatures were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results showed that the cracks of specimens exposed to high temperatures decreased with increasing biochar content. The addition of 2% and 5% biochar increased the residual compressive strength of the specimens exposed to 300 °C and the relative residual compressive strength at 550 °C. As the exposure temperature increased, the addition of biochar compensated for the decreasing ultrasonic pulse velocity. The addition of biochar contributed to the release of free water and bound water, and reduced the vapor pressure of the specimen. The addition of biochar did not change the types of functional groups and crystalline phases of the products of cementitious materials exposed to high temperatures. Biochar particles were difficult to observe at 900 °C in scanning electron microscopy images. In summary, because biochar has internal pores, it can improve the high-temperature resistance of cement paste.

8.
Polymers (Basel) ; 13(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34451356

ABSTRACT

Every year, ceramic tile factories and the iron smelting industry produce huge amounts of waste ceramic tiles and blast furnace slag (BFS), respectively. In the field of construction materials, this waste can be used as a raw material for binders, thus reducing landfill waste and mitigating environmental pollution. The purpose of this study was to mix waste ceramic powder (WCP) into BFS paste and mortar activated by sodium silicate and sodium hydroxide to study its effect on performance. BFS was partially replaced by WCP at the rate of 10-30% by weight. Some experimental studies were conducted on, for example, the fluidity, heat of hydration, compressive strength testing, ultrasonic pulse velocity (UPV), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), electrical resistivity, sulfuric acid attack, and chloride ion diffusion coefficient. Based on the results of these experiments, the conclusions are: (1) increasing the amount of waste ceramic powder in the mixture can improve the fluidity of the alkali-activated paste; (2) adding waste ceramic powder to the alkali-activated mortar can improve the resistance of the mortar to sulfuric acid; (3) adding waste ceramic powder to the alkali-activated mortar can increase the diffusion coefficient of chloride ions; (4) the early strength of alkali-activated mortar is affected by the Ca/Si ratio, while the later strength is affected by the change in the Si/Al ratio.

9.
Materials (Basel) ; 14(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807448

ABSTRACT

Self-healing of cracks in cementitious materials using healing agents encapsulated in microcapsules is an intelligent and effective method. In this study, microcapsules were prepared by the melt-dispersion-condensation method using microcrystalline wax as the shell and E-51 epoxy resin as the healing agent. The effects of preparation process parameters and microcrystalline wax/E-51 epoxy resin weight ratio on the core content, particle size distribution, thermal properties, morphology, and chemical composition of microcapsules were investigated. The results indicated that the optimal parameters of the microcapsule were microcrystalline wax/E-51 epoxy resin weight ratio of 1:1.2, stirring speed of 900 rpm, and preparation temperature of 105 °C. The effects of microcapsules on pore size distribution, pore structure, mechanical properties, permeability, and ultrasonic amplitude of mortar were determined, and the self-healing ability of mortar with different contents of microcapsules was evaluated. The optimal content of microcapsules in mortars was 4% of the cement weight, and the surface cracks of mortar containing microcapsules with an initial width of 0.28 mm were self-healed within three days, indicating that microcapsules have excellent self-healing ability for cementitious materials.

10.
Materials (Basel) ; 15(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35009349

ABSTRACT

At present, reducing carbon emissions is an urgent problem that needs to be solved in the cement industry. This study used three mineral admixtures materials: limestone powder (0-10%), metakaolin (0-15%), and fly ash (0-30%). Binary, ternary, and quaternary pastes were prepared, and the specimens' workability, compressive strength, ultrasonic pulse speed, surface resistivity, and the heat of hydration were studied; X-ray diffraction and attenuated total reflection Fourier transform infrared tests were conducted. In addition, the influence of supplementary cementitious materials on the compressive strength and durability of the blended paste and the sustainable development of the quaternary-blended paste was analyzed. The experimental results are summarized as follows: (1) metakaolin can reduce the workability of cement paste; (2) the addition of alternative materials can promote cement hydration and help improve long-term compressive strength; (3) surface resistivity tests show that adding alternative materials can increase the value of surface resistivity; (4) the quaternary-blended paste can greatly reduce the accumulated heat of hydration; (5) increasing the amount of supplementary cementitious materials can effectively reduce carbon emissions compared with pure cement paste. In summary, the quaternary-blended paste has great advantages in terms of durability and sustainability and has good development prospects.

11.
Materials (Basel) ; 12(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717238

ABSTRACT

Calcined Hwangtoh (HT) clay is a very promising supplementary cementitious material (SCM). In this work, the development of the mechanical properties and microstructures of HT-blended cement paste was studied after substituting the binder with HT powder calcined at 800 °C. The water-to-binder (w/b) ratios of the paste used were 0.2 and 0.5, and the quantities of HT powder added to the mixture were 0, 10, and 20%. The compressive strength test indicates that the addition of the HT powder increases the compressive strength of the paste after seven days of curing, and the highest compressive strength is obtained with the 10% HT substitution, regardless of whether the w/b ratio is 0.5 or 0.2. X-ray fluorescence (XRF), X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), isothermal calorimetry, thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis show that the HT powder not only has a physical effect (i.e., nucleation effect and dilution effect) on cement hydration but also has a chemical effect (i.e., chemical reaction of HT). The results of scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) analysis show that the paste has more ettringite during the early stage, and the microstructure is refined after the addition of the HT powder. In addition, the relationships between chemically bound water, hydration heat, and compressive strength are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...