Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 388, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627435

ABSTRACT

Construction waste is unavoidable in the process of urban development, causing serious environmental pollution. Accurate assessment of municipal construction waste generation requires building construction waste identification models using deep learning technology. However, this process requires high-quality public datasets for model training and validation. This study utilizes Google Earth and GF-2 images as the data source to construct a specific dataset of construction waste landfills in the Changping and Daxing districts of Beijing, China. This dataset contains 3,653 samples of the original image areas and provides mask-labeled images in the semantic segmentation domains. Each pixel within a construction waste landfill is classified into 4 categories of the image areas, including background area, vacant landfillable area, engineering facility area, and waste dumping area. The dataset contains 237,115,531 pixels of construction waste and 49,724,513 pixels of engineering facilities. The pixel-level semantic segmentation labels are provided to quantify the construction waste yield, which can serve as the basic data for construction waste extraction and yield estimation both for academic and industrial research.

2.
Sensors (Basel) ; 23(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067914

ABSTRACT

With the advantages of real-time data processing and flexible deployment, unmanned aerial vehicle (UAV)-assisted mobile edge computing systems are widely used in both civil and military fields. However, due to limited energy, it is usually difficult for UAVs to stay in the air for long periods and to perform computational tasks. In this paper, we propose a full-duplex air-to-air communication system (A2ACS) model combining mobile edge computing and wireless power transfer technologies, aiming to effectively reduce the computational latency and energy consumption of UAVs, while ensuring that the UAVs do not interrupt the mission or leave the work area due to insufficient energy. In this system, UAVs collect energy from external air-edge energy servers (AEESs) to power onboard batteries and offload computational tasks to AEESs to reduce latency. To optimize the system's performance and balance the four objectives, including the system throughput, the number of low-power alarms of UAVs, the total energy received by UAVs and the energy consumption of AEESs, we develop a multi-objective optimization framework. Considering that AEESs require rapid decision-making in a dynamic environment, an algorithm based on multi-agent deep deterministic policy gradient (MADDPG) is proposed, to optimize the AEESs' service location and to control the power of energy transfer. While training, the agents learn the optimal policy given the optimization weight conditions. Furthermore, we adopt the K-means algorithm to determine the association between AEESs and UAVs to ensure fairness. Simulated experiment results show that the proposed MODDPG (multi-objective DDPG) algorithm has better performance than the baseline algorithms, such as the genetic algorithm and other deep reinforcement learning algorithms.

3.
BMC Bioinformatics ; 23(1): 552, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536291

ABSTRACT

BACKGROUND: Medication recommendation based on electronic medical record (EMR) is a research hot spot in smart healthcare. For developing computational medication recommendation methods based on EMR, an important challenge is the lack of a large number of longitudinal EMR data with time correlation. Faced with this challenge, this paper proposes a new EMR-based medication recommendation model called MR-KPA, which combines knowledge-enhanced pre-training with the deep adversarial network to improve medication recommendation from both feature representation and the fine-tuning process. Firstly, a knowledge-enhanced pre-training visit model is proposed to realize domain knowledge-based external feature fusion and pre-training-based internal feature mining for improving the feature representation. Secondly, a medication recommendation model based on the deep adversarial network is developed to optimize the fine-tuning process of pre-training visit model and alleviate over-fitting of model caused by the task gap between pre-training and recommendation. RESULT: The experimental results on EMRs from medical and health institutions in Hainan Province, China show that the proposed MR-KPA model can effectively improve the accuracy of medication recommendation on small-scale longitudinal EMR data compared with existing representative methods. CONCLUSION: The advantages of the proposed MR-KPA are mainly attributed to knowledge enhancement based on ontology embedding, the pre-training visit model and adversarial training. Each of these three optimizations is very effective for improving the capability of medication recommendation on small-scale longitudinal EMR data, and the pre-training visit model has the most significant improvement effect. These three optimizations are also complementary, and their integration makes the proposed MR-KPA model achieve the best recommendation effect.


Subject(s)
Electronic Health Records , Knowledge Bases , China
4.
BMC Bioinformatics ; 23(1): 367, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071406

ABSTRACT

BACKGROUND: Accurately predicting drug-target binding affinity (DTA) in silico plays an important role in drug discovery. Most of the computational methods developed for predicting DTA use machine learning models, especially deep neural networks, and depend on large-scale labelled data. However, it is difficult to learn enough feature representation from tens of millions of compounds and hundreds of thousands of proteins only based on relatively limited labelled drug-target data. There are a large number of unknown drugs, which never appear in the labelled drug-target data. This is a kind of out-of-distribution problems in bio-medicine. Some recent studies adopted self-supervised pre-training tasks to learn structural information of amino acid sequences for enhancing the feature representation of proteins. However, the task gap between pre-training and DTA prediction brings the catastrophic forgetting problem, which hinders the full application of feature representation in DTA prediction and seriously affects the generalization capability of models for unknown drug discovery. RESULTS: To address these problems, we propose the GeneralizedDTA, which is a new DTA prediction model oriented to unknown drug discovery, by combining pre-training and multi-task learning. We introduce self-supervised protein and drug pre-training tasks to learn richer structural information from amino acid sequences of proteins and molecular graphs of drug compounds, in order to alleviate the problem of high variance caused by encoding based on deep neural networks and accelerate the convergence of prediction model on small-scale labelled data. We also develop a multi-task learning framework with a dual adaptation mechanism to narrow the task gap between pre-training and prediction for preventing overfitting and improving the generalization capability of DTA prediction model on unknown drug discovery. To validate the effectiveness of our model, we construct an unknown drug data set to simulate the scenario of unknown drug discovery. Compared with existing DTA prediction models, the experimental results show that our model has the higher generalization capability in the DTA prediction of unknown drugs. CONCLUSIONS: The advantages of our model are mainly attributed to two kinds of pre-training tasks and the multi-task learning framework, which can learn richer structural information of proteins and drugs from large-scale unlabeled data, and then effectively integrate it into the downstream prediction task for obtaining a high-quality DTA prediction in unknown drug discovery.


Subject(s)
Drug Discovery , Machine Learning , Drug Delivery Systems , Neural Networks, Computer , Proteins
5.
Entropy (Basel) ; 24(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36010788

ABSTRACT

Accurate and fine-grained prediction of PM2.5 concentration is of great significance for air quality control and human physical and mental health. Traditional approaches, such as time series, recurrent neural networks (RNNs) or graph convolutional networks (GCNs), cannot effectively integrate spatial-temporal and meteorological factors and manage dynamic edge relationships among scattered monitoring stations. In this paper, a spatial-temporal causal convolution network framework, ST-CCN-PM2.5, is proposed. Both the spatial effects of multi-source air pollutants and meteorological factors are considered via spatial attention mechanism. Time-dependent features in causal convolution networks are extracted by stacked dilated convolution and time attention. All the hyper-parameters in ST-CCN-PM2.5 are tuned by Bayesian optimization. Haikou air monitoring station data are employed with a series of baselines (AR, MA, ARMA, ANN, SVR, GRU, LSTM and ST-GCN). Final results include the following points: (1) For a single station, the RMSE, MAE and R2 values of ST-CCN-PM2.5 decreased by 27.05%, 10.38% and 3.56% on average, respectively. (2) For all stations, ST-CCN-PM2.5 achieve the best performance in win-tie-loss experiments. The numbers of winning stations are 68, 63, and 64 out of 95 stations in RMSE (MSE), MAE, and R2, respectively. In addition, the mean MSE, RMSE and MAE of ST-CCN-PM2.5 are 4.94, 2.17 and 1.31, respectively, and the R2 value is 0.92. (3) Shapley analysis shows wind speed is the most influencing factor in fine-grained PM2.5 concentration prediction. The effects of CO and temperature on PM2.5 prediction are moderately significant. Friedman test under different resampling further confirms the advantage of ST-CCN-PM2.5. The ST-CCN-PM2.5 provides a promising direction for fine-grained PM2.5 prediction.

6.
Health Inf Sci Syst ; 10(1): 15, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35846171

ABSTRACT

With the development of the Internet, more and more people prefer to confide their sentiments in the virtual world, especially those with depression. The social media where people with depression collectively leave messages is called the "Tree Hole". The purpose of this article is to support the "Tree Hole" rescue volunteers to help patients with depression, especially after the outbreak of COVID-19 and other major events, to guide the crisis intervention of patients with depression. Based on the message data of "Tree Hole" named "Zou Fan", this paper used a deep learning model and sentiment scoring algorithm to analyze the fluctuation characteristics sentiment of user's message in different time dimensions. Through detailed investigation of the research results, we found that the number of "Tree Hole" messages in multiple time dimensions is positively correlated to emotion. The longer the "Tree Hole" is formed, the more negative the emotion is, and the outbreak of COVID-19 and other major events have obvious effects on the emotion of the messages. In order to improve the efficiency of "Tree Hole" rescue, volunteers should focus on the long-formed "Tree Hole" and the user groups that are active in the early morning. This research is of great significance for the emotional guidance of online mental health patients, especially the crisis intervention for depression patients after the outbreak of COVID-19 and other major events.

7.
Article in English | MEDLINE | ID: mdl-35328880

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) is spreading all over the world. Quantitative analysis of the effects of various factors on the spread of the epidemic will help people better understand the transmission characteristics of SARS-CoV-2, thus providing a theoretical basis for governments to develop epidemic prevention and control strategies. This article uses public data sets from The Center for Systems Science and Engineering at Johns Hopkins University (JHU CSSE), Air Quality Open Data Platform, China Meteorological Data Network, and WorldPop website to construct experimental data. The epidemic situation is predicted by Dual-link BiGRU Network, and the relationship between epidemic spread and various feature factors is quantitatively analyzed by the Gauss-Newton iteration Method. The study found that population density has the greatest positive correlation to the spread of the epidemic among the selected feature factors, followed by the number of landing flights. The number of newly diagnosed daily will increase by 1.08% for every 1% of the population density, the number of newly diagnosed daily will increase by 0.98% for every 1% of the number of landing flights. The results of this study show that the control of social distance and population movement has a high priority in epidemic prevention and control strategies, and it can play a very important role in controlling the spread of the epidemic.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2
8.
Front Neurosci ; 15: 739535, 2021.
Article in English | MEDLINE | ID: mdl-35321479

ABSTRACT

Provenances are a research focus of neuroimaging resources sharing. An amount of work has been done to construct high-quality neuroimaging provenances in a standardized and convenient way. However, besides existing processed-based provenance extraction methods, open research sharing in computational neuroscience still needs one way to extract provenance information from rapidly growing published resources. This paper proposes a literature mining-based approach for research sharing-oriented neuroimaging provenance construction. A group of neuroimaging event-containing attributes are defined to model the whole process of neuroimaging researches, and a joint extraction model based on deep adversarial learning, called AT-NeuroEAE, is proposed to realize the event extraction in a few-shot learning scenario. Finally, a group of experiments were performed on the real data set from the journal PLOS ONE. Experimental results show that the proposed method provides a practical approach to quickly collect research information for neuroimaging provenance construction oriented to open research sharing.

9.
Article in English | MEDLINE | ID: mdl-33138223

ABSTRACT

The outbreak of Corona Virus Disease 2019 (COVID-19) has affected the lives of people all over the world. It is particularly urgent and important to analyze the epidemic spreading law and support the implementation of epidemic prevention measures. It is found that there is a moderate to high correlations between the number of newly diagnosed cases per day and temperature and relative humidity in countries with more than 10,000 confirmed cases worldwide. In this paper, the correlation between temperature/relative humidity and the number of newly diagnosed cases is obvious. Governments can adjust the epidemic prevention measures according to climate change, which will more effectively control the spread of COVID-19.


Subject(s)
Betacoronavirus , Climate , Coronavirus Infections/transmission , Pandemics , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...