Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Infect Dis ; 7(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36136620

ABSTRACT

Background: With the progress of urbanization, the mobility of people has gradually increased, which has led to the further spread of dengue fever. This study evaluated the transmissibility of dengue fever within districts and between different districts in Zhanjiang City to provide corresponding advice for cross-regional prevention and control. Methods: A mathematical model of transmission dynamics was developed to explore the transmissibility of the disease and to compare that between different regions. Results: A total of 467 DF cases (6.38 per 100,000 people) were reported in Zhanjiang City in 2018. In the model, without any intervention, the number of simulated cases in this epidemic reached about 950. The dengue fever transmissions between districts varied within and between regions. When the spread of dengue fever from Chikan Districts to other districts was cut off, the number of cases in other districts dropped significantly or even to zero. When the density of mosquitoes in Xiashan District was controlled, the dengue fever epidemic in Xiashan District was found to be significantly alleviated. Conclusions: When there is a dengue outbreak, timely measures can effectively control it from developing into an epidemic. Different prevention and control measures in different districts could efficiently reduce the risk of disease transmission.

2.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963481

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
3.
Infect Dis Poverty ; 10(1): 91, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34187566

ABSTRACT

BACKGROUND: Hepatitis E, an acute zoonotic disease caused by the hepatitis E virus (HEV), has a relatively high burden in developing countries. The current research model on hepatitis E mainly uses experimental animal models (such as pigs, chickens, and rabbits) to explain the transmission of HEV. Few studies have developed a multi-host and multi-route transmission dynamic model (MHMRTDM) to explore the transmission feature of HEV. Hence, this study aimed to explore its transmission and evaluate the effectiveness of intervention using the dataset of Jiangsu Province. METHODS: We developed a dataset comprising all reported HEV cases in Jiangsu Province from 2005 to 2018. The MHMRTDM was developed according to the natural history of HEV cases among humans and pigs and the multi-transmission routes such as person-to-person, pig-to-person, and environment-to-person. We estimated the key parameter of the transmission using the principle of least root mean square to fit the curve of the MHMRTDM to the reported data. We developed models with single or combined countermeasures to assess the effectiveness of interventions, which include vaccination, shortening the infectious period, and cutting transmission routes. The indicator, total attack rate (TAR), was adopted to assess the effectiveness. RESULTS: From 2005 to 2018, 44 923 hepatitis E cases were reported in Jiangsu Province. The model fits the data well (R2 = 0.655, P < 0.001). The incidence of the disease in Jiangsu Province and its cities peaks are around March; however, transmissibility of the disease peaks in December and January. The model showed that the most effective intervention was interrupting the pig-to-person route during the incidence trough of September, thereby reducing the TAR by 98.11%, followed by vaccination (reducing the TAR by 76.25% when the vaccination coefficient is 100%) and shortening the infectious period (reducing the TAR by 50.05% when the infectious period is shortened to 15 days). CONCLUSIONS: HEV could be controlled by interrupting the pig-to-person route, shortening the infectious period, and vaccination. Among these interventions, the most effective was interrupting the pig-to-person route.


Subject(s)
Hepatitis E/prevention & control , Zoonoses/prevention & control , Animals , China/epidemiology , Disease Models, Animal , Feasibility Studies , Hepatitis E/epidemiology , Hepatitis E/transmission , Humans , Models, Theoretical , Swine , Vaccination
4.
Infect Dis Poverty ; 10(1): 53, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33874998

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) causes an immense disease burden. Although public health countermeasures effectively controlled the epidemic in China, non-pharmaceutical interventions can neither be maintained indefinitely nor conveniently implemented globally. Vaccination is mainly used to prevent COVID-19, and most current antiviral treatment evaluations focus on clinical efficacy. Therefore, we conducted population-based simulations to assess antiviral treatment effectiveness among different age groups based on its clinical efficacy. METHODS: We collected COVID-19 data of Wuhan City from published literature and established a database (from 2 December 2019 to 16 March 2020). We developed an age-specific model to evaluate the effectiveness of antiviral treatment in patients with COVID-19. Efficacy was divided into three types: (1) viral activity reduction, reflected as transmission rate decrease [reduction was set as v (0-0.8) to simulate hypothetical antiviral treatments]; (2) reduction in the duration time from symptom onset to patient recovery/removal, reflected as a 1/γ decrease (reduction was set as 1-3 days to simulate hypothetical or real-life antiviral treatments, and the time of asymptomatic was reduced by the same proportion); (3) fatality rate reduction in severely ill patients (fc) [reduction (z) was set as 0.3 to simulate real-life antiviral treatments]. The population was divided into four age groups (groups 1, 2, 3 and 4), which included those aged ≤ 14; 15-44; 45-64; and ≥ 65 years, respectively. Evaluation indices were based on outbreak duration, cumulative number of cases, total attack rate (TAR), peak date, number of peak cases, and case fatality rate (f). RESULTS: Comparing the simulation results of combination and single medication therapy s, all four age groups showed better results with combination medication. When 1/γ = 2 and v = 0.4, age group 2 had the highest TAR reduction rate (98.48%, 56.01-0.85%). When 1/γ = 2, z = 0.3, and v = 0.1, age group 1 had the highest reduction rate of f (83.08%, 0.71-0.12%). CONCLUSIONS: Antiviral treatments are more effective in COVID-19 transmission control than in mortality reduction. Overall, antiviral treatments were more effective in younger age groups, while older age groups showed higher COVID-19 prevalence and mortality. Therefore, physicians should pay more attention to prevention of viral spread and patients deaths when providing antiviral treatments to patients of older age groups.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/drug effects , Adolescent , Age Factors , Aged , COVID-19/epidemiology , COVID-19/virology , China/epidemiology , Humans , Infectious Disease Incubation Period , Middle Aged , Models, Statistical , Young Adult
5.
Nat Prod Res ; 32(21): 2510-2515, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29313378

ABSTRACT

Two new diketopiperazine alkaloids, named protuboxepin C (1) and protuboxepin D (2), which contain D-Phe residue and oxepin ring, were isolated from EtOAc extract of sponge-derived fungus Aspergillus sp SCSIO XWS02F40. Their structures were elucidated by 1D, 2D NMR and HRESIMS dates, and their absolute configurations were confirmed by single crystal X-ray diffraction experiments and CD analyses. The in vitro cytotoxicity of these two new compounds was further evaluated using A549 and Hela cell lines.


Subject(s)
Alkaloids/chemistry , Aspergillus/chemistry , Diketopiperazines/chemistry , Piperazines/chemistry , A549 Cells , Alkaloids/isolation & purification , Animals , Crystallography, X-Ray , Diketopiperazines/isolation & purification , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Piperazines/isolation & purification , Porifera/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...