Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Med (Lausanne) ; 11: 1381967, 2024.
Article in English | MEDLINE | ID: mdl-38707190

ABSTRACT

Introduction: Postoperative delirium (POD) remains one of the most prevalent neuropsychiatric complications after deep brain stimulation (DBS) surgery. The fibrinogen-to-albumin ratio (FAR) has been shown to significantly correlate with the prognosis of many diseases related to inflammation. However, the association between FAR and POD remains unclear. We aimed to explore the association between POD and FAR in patients with Parkinson's disease (PD) undergoing DBS surgery. Methods: Patients with PD who underwent DBS surgery in our hospital were included in this retrospective study. FAR was calculated from the blood sample collected on admission. The association between baseline FAR and delirium after surgery was assessed by binary logistic regression analysis, interaction analysis, and stratified analyses. Results: Of 226 patients, 37 (16.4%) suffered from delirium after surgery. The average age of the participants was 63.3 ± 7.2 years, and 51.3% were male patients. Multivariate logistic regression analysis indicated that patients in the highest FAR tertile had a higher risk of POD compared with patients in the lowest FAR tertile (OR = 3.93, 95% CI: 1.24 ~ 12.67). Subgroup analysis demonstrated that FAR and the preoperative Mini-Mental State Examination score (p = 0.013) had an association with delirium after surgery. Conclusion: Our data suggest that a higher preoperative FAR was significantly associated with delirium after DBS surgery. FAR on admission is a useful candidate biomarker to identify patients with PD who are at a high risk of delirium following DBS surgery.

2.
Nucleic Acids Res ; 52(8): 4541-4555, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38499490

ABSTRACT

Formation of programmed DNA double-strand breaks is essential for initiating meiotic recombination. Genetic studies on Arabidopsis thaliana and Mus musculus have revealed that assembly of a type IIB topoisomerase VI (Topo VI)-like complex, composed of SPO11 and MTOPVIB, is a prerequisite for generating DNA breaks. However, it remains enigmatic if MTOPVIB resembles its Topo VI subunit B (VIB) ortholog in possessing robust ATPase activity, ability to undergo ATP-dependent dimerization, and activation of SPO11-mediated DNA cleavage. Here, we successfully prepared highly pure A. thaliana MTOPVIB and MTOPVIB-SPO11 complex. Contrary to expectations, our findings highlight that MTOPVIB differs from orthologous Topo VIB by lacking ATP-binding activity and independently forming dimers without ATP. Most significantly, our study reveals that while MTOPVIB lacks the capability to stimulate SPO11-mediated DNA cleavage, it functions as a bona fide DNA-binding protein and plays a substantial role in facilitating the dsDNA binding capacity of the MOTOVIB-SPO11 complex. Thus, we illustrate mechanistic divergence between the MTOPVIB-SPO11 complex and classical type IIB topoisomerases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Topoisomerases, Type II , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Archaeal Proteins , DNA Breaks, Double-Stranded , DNA Topoisomerases/metabolism , DNA Topoisomerases/genetics , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Evolution, Molecular , Meiosis , Protein Multimerization
3.
Ren Fail ; 46(1): 2303395, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38264967

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication in severe acute pancreatitis (AP), associated with high mortality rate. Early detection of AKI is crucial for prompt intervention and better outcomes. This study aims to develop and validate predictive models using machine learning (ML) to identify the onset of AKI in patients with AP. METHODS: Patients with AP were extracted from the MIMIC-IV database. We performed feature selection using the random forest method. Model construction involved an ensemble of ML, including random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN), naive Bayes (NB), neural network (NNET), generalized linear model (GLM), and gradient boosting machine (GBM). The best-performing model was fine-tuned and evaluated through split-set validation. RESULTS: We analyzed 1,235 critically ill patients with AP, of which 667 cases (54%) experienced AKI during hospitalization. We used 49 variables to construct models, including GBM, GLM, KNN, NB, NNET, RF, and SVM. The AUC for these models was 0.814 (95% CI, 0.763 to 0.865), 0.812 (95% CI, 0.769 to 0.854), 0.671 (95% CI, 0.622 to 0.719), 0.812 (95% CI, 0.780 to 0.864), 0.688 (95% CI, 0.624 to 0.752), 0.809 (95% CI, 0.766 to 0.851), and 0.810 (95% CI, 0.763 to 0.856) respectively. In the test set, the GBM's performance was consistent, with an area of 0.867 (95% CI, 0.831 to 0.903). CONCLUSIONS: The GBM model's precision is crucial, aiding clinicians in identifying high-risk patients and enabling timely interventions to reduce mortality rates in critical care.


Subject(s)
Acute Kidney Injury , Pancreatitis , Humans , Acute Disease , Bayes Theorem , Critical Illness , Machine Learning
4.
Chembiochem ; 25(3): e202300744, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38055188

ABSTRACT

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Subject(s)
Hirudins , Thrombin , Tyrosine/analogs & derivatives , Hirudins/pharmacology , Hirudins/chemistry , Hirudins/metabolism , Amino Acids , Peptides/pharmacology , Binding Sites
5.
Int J Gen Med ; 16: 5355-5362, 2023.
Article in English | MEDLINE | ID: mdl-38021071

ABSTRACT

Purpose: To explore the relationship between the systemic inflammation response index (SIRI) and postoperative delirium (POD) in older patients with hip arthroplasty surgery. Patients and Methods: Older patients who underwent elective hip arthroplasty surgery were included in this retrospective study. SIRI, neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were collected from blood routine examination at admission. Binary logistic regression analysis was performed to evaluate the association between SIRI levels and POD was analyzed. Results: Ultimately, 116 older patients who met the inclusion criteria were assessed. Thirty-four (29%) of 116 patients diagnosed with POD were defined as the POD group, and the rest consisted of the Non-POD group. Compared with non-POD patients, POD patients showed significantly higher levels of SIRI (P < 0.001) and NLR (P = 0.002) at admission. There was no significance in the levels of PLR between two groups. SIRI was independently associated with the occurrence of POD in multivariate logistic regression analysis [odds ratio (OR) = 3.34, 95% confidence interval (95% CI) = 1.26-8.85, P = 0.016]. Receiver operating characteristic curve analysis indicated that SIRI with an optimal cutoff value of 0.987 predicted the POD with a sensitivity of 88.2% and specificity of 74.4%, and the area under the curve was 0.82 (95% CI, 0.74-0.90, P < 0.01). Conclusion: Preoperative SIRI and NLR levels in the blood are associated with the occurrence of POD. Moreover, preoperative SIRI level is a useful candidate biomarker to identify delirium after elective hip arthroplasty surgery in older patients.

6.
Antiviral Res ; 219: 105735, 2023 11.
Article in English | MEDLINE | ID: mdl-37858764

ABSTRACT

A class of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones were designed and synthesized via Michael addition, cyclization, aldol condensation, and deprotonation to inhibit the human transmembrane protease serine 2 (TMPRSS2) and Furin, which are involved in priming the SARS-CoV-2 Spike for virus entry. The most potent inhibitor 2f (81) was found to efficiently inhibit the replication of various SARS-CoV-2 delta and omicron variants in VeroE6 and Calu-3 cells, with EC50 range of 0.001-0.026 µM by pre-incubation with the virus to avoid the virus entry. The more potent antiviral activities than the proteases inhibitory activities led to discovery that the synthesized compounds also inhibited Spike's receptor binding domain (RBD):angiotensin converting enzyme 2 (ACE2) interaction as a main target, and their antiviral activities were enhanced by inhibiting TMPRSS2 and/or Furin. To further confirm the blocking effect of 2f (81) on virus entry, SARS-CoV-2 Spike pseudovirus was used in the entry assay and the results showed that the compound inhibited the pseudovirus entry in a ACE2-dependent pathway, via mainly inhibiting RBD:ACE2 interaction and TMPRSS2 activity in Calu-3 cells. Finally, in the in vivo animal model of SARS-CoV-2 infection, the oral administration of 25 mg/kg 2f (81) in hamsters resulted in reduced bodyweight loss and 5-fold lower viral RNA levels in nasal turbinate three days post-infection. Our findings demonstrated the potential of the lead compound for further preclinical investigation as a potential treatment for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Furin/pharmacology , Angiotensin-Converting Enzyme 2/chemistry , Pyrrolidinones/pharmacology , Antiviral Agents/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
7.
J Agric Food Chem ; 71(35): 13014-13023, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37566786

ABSTRACT

Antrodia cinnamomea is an endemic species found in Taiwan, known for its medicinal properties in treating various discomforts, including inflammation, diarrhea, abdominal pain, and other diseases. A. cinnamomea contains terpenoids that exhibit numerous bioactivities, making them potential food additives. This discovery piqued our interest in uncovering their biosynthetic pathway. Herein, we conducted functional and structural characterization of a sesquiterpene synthase Cop4 from A. cinnamomea (AcCop4). Through gas chromatography-mass spectrometry analysis, we observed that AcCop4 catalyzes the cyclization of farnesyl pyrophosphate (FPP), primarily producing cubebol. Cubebol is widely used as a long-lasting cooling and refreshing agent in the food industry. The structure of AcCop4, complexed with pyrophosphate and magnesium ions, revealed the closure of the active site facilitated by R311. Interestingly, binding of pyrophosphate and magnesium ions did not cause any significant conformational change in the G1/2 helix of AcCop4, indicating that the apo form is not fully open. This high-resolution structure serves as a solid basis for understanding the biosynthetic mechanism of AcCop4 and supports further production and modification of cubebol for its applications in the food industry.


Subject(s)
Antrodia , Sesquiterpenes , Diphosphates/metabolism , Magnesium/metabolism , Sesquiterpenes/metabolism , Antrodia/metabolism
9.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372979

ABSTRACT

TRIM28/KAP1/TIF1ß is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.


Subject(s)
Protein Processing, Post-Translational , Repressor Proteins , Humans , Repressor Proteins/genetics , K562 Cells , Acetylation , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism , Mutation , Gene Expression , Zinc/metabolism
10.
Ann Oper Res ; : 1-27, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-37361071

ABSTRACT

It is necessary to emphasize both the process and results of performance management to find the balance between quality and quantity needed to ensure the sustainable development of universities to make the best use of limited educational resources and meet the diverse needs of students. This study applies failure mode and effects analysis (FMEA) to analyze obstacles to university sustainability by constructing complete risk assessment modes and reference indicators. The neutrosophic set theory was incorporated into the FMEA to account for information uncertainty and asymmetry. A specialist team then evaluated the importance of the risk factors using neutrosophic indifference threshold-based attribute ratio analysis to determine objective weights for the risk factors. Furthermore, the neutrosophic technique for order preference by similarity to the ideal solution based on aspiration level (N-TOPSIS-AL) is employed to aggregate the total risk scores of the failure modes. Using neutrosophic sets to measure truth, falsity, and indeterminacy in the assessment significantly improve the adaptability of the fuzzy theory to real-world problems. The study results indicate that when assessing university affairs management and analyzing possible risks, priority must be given to the occurrence of risks and that the lack of educational facilities is the riskiest item in the specialist assessment. The proposed assessment model can be applied as a basis for university sustainability assessments to accelerate the development of other forward-looking approaches.

11.
Brain Sci ; 12(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36009070

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients who receive deep brain stimulation (DBS) have a higher risk of postoperative pain, which will affect their postoperative quality of recovery (QoR). Scalp nerve block (SNB) and intercostal nerve block (ICNB) can alleviate postoperative pain, yet their effect on postoperative QoR in PD patients has proven to be unclear. Therefore, we have aimed to explore the effect of SNB paired with ICNB on postoperative QoR. METHODS: To explore the effect, we have designed a randomized controlled trial in which 88 patients with PD will be randomly assigned to either an SNB group or control group, receiving either SNB combined with ICNB or without before surgery. The primary outcome will be a 15-item QoR score at 24 h after surgery. The secondary outcomes will include: 15-item QoR scores at 72 h and 1 month after surgery; the numeric rating scale pain scores before discharge from the postanesthesia care unit (PACU) at 24 h, 72 h, and 1 month after surgery; rescue analgesics; nausea and vomiting 24 h after operation and remifentanil consumption during operation; emergence agitation; the duration of anesthesia and surgery; time to respiratory recovery, time to response, and time to extubation; the PACU length of stay; as well as adverse events. Proposed protocol and conclusion: Our findings will provide a novel method for the management of recovery and acute pain after DBS in PD patients. This research was registered at clinicaltrials.gov NCT05353764 on 19 April 2022.

12.
Bio Protoc ; 12(10): e4420, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35813026

ABSTRACT

Genome editing by the delivery of pre-assembled Cas9 ribonucleoproteins (Cas9 RNP) is an increasingly popular approach for cell types that are difficult to manipulate genetically by the conventional plasmid and viral methods. Cas9 RNP editing is robust, precise, capable of multiplexing, and free of genetic materials. Its transient presence in cells limits residual editing activity. This protocol describes the preparation of recombinant Streptococcus pyogenes Cas9 (SpCas9) protein by heterologous expression and purification from Escherichia coli, and the synthesis of CRISPR guide RNA by in vitro transcription and PAGE purification. SpCas9 is the first CRISPR Cas9 discovered ( Jinek et al., 2012 ) and is also one of the most characterized Cas enzymes for genome editing applications. Using this formulation of Cas9 RNP, we have demonstrated highly efficient genome editing in primary human T and natural killer (NK) cells by electroporation, and in fungi and plants by polyethylene glycol-mediated transformation. Our protocol of Cas9 RNP preparation is consistent and straightforward to adopt for genome editing in other cell types and organisms. Graphical abstract.

13.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743282

ABSTRACT

TRIM28 is a scaffold protein that interacts with DNA-binding proteins and recruits corepressor complexes to cause gene silencing. TRIM28 contributes to physiological functions such as cell growth and differentiation. In the chronic myeloid leukemia cell line K562, we edited TRIM28 using CRISPR/Cas9 technology, and the complete and partial knockout (KO) cell clones were obtained and confirmed using quantitative droplet digital PCR (ddPCR) technology. The amplicon sequencing demonstrated no off-target effects in our gene editing experiments. The TRIM28 KO cells grew slowly and appeared red, seeming to have a tendency towards erythroid differentiation. To understand how TRIM28 controls K562 cell proliferation and differentiation, transcriptome profiling analysis was performed in wild-type and KO cells to identify TRIM28-regulated genes. Some of the RNAs that encode the proteins regulating the cell cycle were increased (such as p21) or decreased (such as cyclin D2) in TRIM28 KO cell clones; a tumor marker, the MAGE (melanoma antigen) family, which is involved in cell proliferation was reduced. Moreover, we found that knockout of TRIM28 can induce miR-874 expression to downregulate MAGEC2 mRNA via post-transcriptional regulation. The embryonic epsilon-globin gene was significantly increased in TRIM28 KO cell clones through the downregulation of transcription repressor SOX6. Taken together, we provide evidence to demonstrate the regulatory network of TRIM28-mediated cell growth and erythroid differentiation in K562 leukemia cells.


Subject(s)
Gene Editing , MicroRNAs , CRISPR-Cas Systems , Cell Proliferation/genetics , Gene Expression , Hemoglobin Subunits/genetics , Hemoglobin Subunits/metabolism , Humans , K562 Cells , Transcription Factors/metabolism , Tripartite Motif-Containing Protein 28/metabolism
14.
J Biomed Sci ; 29(1): 20, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35313878

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a worldwide cancer with rising annual incidence. New medications for patients with CRC are still needed. Recently, fluorescent chemical probes have been developed for cancer imaging and therapy. Signal transducer and activator of transcription 1 (STAT1) has complex functions in tumorigenesis and its role in CRC still needs further investigation. METHODS: RNA sequencing datasets in the NCBI GEO repository were analyzed to investigate the expression of STAT1 in patients with CRC. Xenograft mouse models, tail vein injection mouse models, and azoxymethane/dextran sodium sulfate (AOM/DSS) mouse models were generated to study the roles of STAT1 in CRC. A ligand-based high-throughput virtual screening approach combined with SWEETLEAD chemical database analysis was used to discover new STAT1 inhibitors. A newly designed and synthesized fluorescently labeled 4',5,7-trihydroxyisoflavone (THIF) probe (BODIPY-THIF) elucidated the mechanistic actions of STAT1 and THIF in vitro and in vivo. Colonosphere formation assay and chick chorioallantoic membrane assay were used to evaluate stemness and angiogenesis, respectively. RESULTS: Upregulation of STAT1 was observed in patients with CRC and in mouse models of AOM/DSS-induced CRC and metastatic CRC. Knockout of STAT1 in CRC cells reduced tumor growth in vivo. We then combined a high-throughput virtual screening approach and analysis of the SWEETLEAD chemical database and found that THIF, a flavonoid abundant in soybeans, was a novel STAT1 inhibitor. THIF inhibited STAT1 phosphorylation and might bind to the STAT1 SH2 domain, leading to blockade of STAT1-STAT1 dimerization. The results of in vitro and in vivo binding studies of THIF and STAT1 were validated. The pharmacological treatment with BODIPY-THIF or ablation of STAT1 via a CRISPR/Cas9-based strategy abolished stemness and angiogenesis in CRC. Oral administration of BODIPY-THIF attenuated colitis symptoms and tumor growth in the mouse model of AOM/DSS-induced CRC. CONCLUSIONS: This study demonstrates that STAT1 plays an oncogenic role in CRC. BODIPY-THIF is a new chemical probe inhibitor of STAT1 that reduces stemness and angiogenesis in CRC. BODIPY-THIF can be a potential tool for CRC therapy as well as cancer cell imaging.


Subject(s)
Colorectal Neoplasms , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mice , Mice, Knockout , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Oncogenes , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
15.
Environ Sci Process Impacts ; 23(11): 1747-1758, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34608471

ABSTRACT

Biochar stability is a key factor affecting the efficiency of soil carbon sequestration. Mineral calcium carbonate (M-CaCO3) can enhance the stability of biochar, and the mechanism has been extensively studied; however, similar studies on biological calcium carbonate (Bio-CaCO3), another natural form of calcium carbonate, are lacking. In this work, Bio-CaCO3 was used as an additive to explore the mechanism by which it enhances the stability of biochar. The results showed that Bio-CaCO3 improved the stability of biochar at pyrolysis temperatures ranging from 250 to 700 °C, and the enhancement effects increased upon increasing the pyrolysis temperature. The enhancement effects of M-CaCO3 were better at lower temperatures (250 and 400 °C) while Bio-CaCO3 was better at higher temperatures (550 and 700 °C). Mechanistic studies showed that the enhanced stability of Bio-CaCO3 at 250 °C was due to the fact that the inorganic component in Bio-CaCO3 promoted the deoxidation of the carbon matrix and the aromatization of aliphatic carbon at 400 °C. The reasons for the increased stability using Bio-CaCO3 at high temperatures included two mechanisms. One is that the inorganic components in Bio-CaCO3 promoted the aromatization of the carbon matrix. The other is that the unique organic nitrogen-containing functional groups in Bio-CaCO3 underwent dimerization and cyclization with the organic carbon components in biomass to form a more stable pyridinic-N structure. This work provides novel ideas for enhancing biochar stability using Bio-CaCO3.


Subject(s)
Calcium Carbonate , Charcoal , Carbon Sequestration , Pyrolysis , Soil
16.
Int J Biol Macromol ; 185: 122-133, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34147523

ABSTRACT

Photothermal-responsive (PTR) and anti-oxidative silk fibroin/dopamine nanoparticles (SD NPs) mediated by tyrosinase were produced, and decorated either by curcumin or albumin (BSA) to produce SD/curcumin or SD/BSA NPs as drug delivery vehicles, respectively. Both drug loaded NPs were further blended into SF solutions to produce SD films, as a depot-based drug delivery. The reaction mechanisms for producing new SD NPs were proposed. Anti-oxidative activities for SD NPs were examined by H2O2 scavenge capacities of NPs. NPs were not cytotoxic at concentration of 1000µg/mL. Moreover, heparin was coated to SD films to produce SDH films for temporary implants. Cumulative release profiles for drugs loaded SDH films showed fast releases and then sustained releases stages. Furthermore, the releases of curcumin in sustained stages for varying SD/curcumin NPs loaded into SDH films were dependent on amounts of NPs. BSA releases profiles for SD/BSA NPs loaded into SDH films were similar to those profiles for the films carried with SD/curcumin NPs but release periods of BSA were short. Degrees of PTR effects with irradiation of near infrared on the releases of two drugs loaded films were different. Blood clot at wound areas of rats with SDH films implantations was not found for 24 h study.


Subject(s)
Albumins/chemistry , Antioxidants/pharmacology , Curcumin/administration & dosage , Dopamine/chemistry , Fibroins/chemistry , Thrombosis/therapy , Animals , Antioxidants/chemistry , Cell Line , Curcumin/chemistry , Curcumin/pharmacology , Disease Models, Animal , Drug Delivery Systems , Drug Liberation , Hydrogen Peroxide/metabolism , Male , Mice , Nanoparticles , Photothermal Therapy , Rats , Thrombosis/metabolism
17.
J Inflamm (Lond) ; 18(1): 22, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34090459

ABSTRACT

BACKGROUND: Tristetraprolin (TTP) family proteins contain conserved tandem CCCH zinc-finger binding to AU-rich elements and C-terminal NOT1-binding domain. TTP is phosphorylated extensively in cells, and its mRNA destabilization activity is regulated by protein phosphorylation. METHODS: We generated an antibody against phospho-Serine316 located at the C-terminal NOT1-binding site and examined TTP phosphorylation in LPS-stimulated RAW264.7 cells. Knockout of TTP was created in RAW264.7 cells using CRISPR/Cas9 gene editing to explore TTP functions. RESULTS: We demonstrated that Ser316 was phosphorylated by p90 ribosomal S6 kinase 1 (RSK1) and p38-activated protein kinase (MK2) and dephosphorylated by Protein Phosphatase 2A (PP2A). A phosphorylation-mimic mutant of S316D resulted in dissociation with the CCR4-NOT deadenylase complex through weakening interaction with CNOT1. Furthermore, Ser316 and serines 52 and 178 were independently contributed to the CCR4-NOT complex recruitment in the immunoprecipitation assay using phosphor-mimic mutants. In RAW264.7 macrophages, TTP was induced, and Ser316 was phosphorylated through RSK1 and MK2 by LPS stimulation. Knockout of TTP resulted in TNFα mRNA increased due to mRNA stabilization. Overexpression of non-phosphorylated S316A TTP mutant can restore TTP activity and lead to TNFα mRNA decreased. GST pull-down and RNA pull-down analyses demonstrated that endogenous TTP with Ser316 phosphorylation decreased the interaction with CNOT1. CONCLUSIONS: Our results suggest that the TTP-mediated mRNA stability is modulated by Ser316 phosphorylation via regulating the TTP interaction with the CCR4-NOT deadenylase complex.

18.
Toxicon ; 198: 93-101, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33957151

ABSTRACT

The semi-fossil and pit-less Azemiops feae is possibly the most primitive crotalid species. Here, we have cloned and sequenced cDNAs encoding four serine proteases (vSPs) from the venom glands of Chinese A. feae. Full amino-acid sequences of the major vSP (designated as AzKNa) and three minor vSPs (designated as AzKNb, AzKNc and Az-PA) were deduced. Using Protein-BLAST search, the ten most-similar vSPs for each Azemiops vSP have been selected for multiple sequence alignment, and all the homologs are crotalid vSPs. The results suggest that the A. feae vSPs are structurally most like those of eastern-Chinese Gloydius, Viridovipera, Protobothrops and North American pitvipers, and quite different from more-specialized vSPs such as Agkistrodon venom Protein-C activators. The vSPs from Chinese A. feae and those from Vietnamese A. feae show significant sequence variations. AzKNa is acidic and contains six potential N-glycosylation sites and its surface-charge distribution differs greatly from that of AzKNb, as revealed by 3D-modeling. AzKNb and AzKNc do not contain N-glycosylation sites although most of their close homologs contain one or two. Az-PA belongs to the plasminogen-activator subtype with a conserved N20-glycosylation site. The evolution of this subtype of vSPs in Azemiops and related pitvipers has been traced by phylogenetic analysis.


Subject(s)
Crotalid Venoms , Serine Proteases , Animals , China , Computational Biology , Phylogeny
19.
Int J Mol Sci ; 21(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008113

ABSTRACT

The tripartite motif-containing protein 28 (TRIM28) is a transcription corepressor, interacting with histone deacetylase and methyltransferase complexes. TRIM28 is a crucial regulator in development and differentiation. We would like to investigate its function and regulation in adipogenesis. Knockdown of Trim28 by transducing lentivirus-carrying shRNAs impairs the differentiation of 3T3-L1 preadipocytes, demonstrated by morphological observation and gene expression analysis. To understand the molecular mechanism of Trim28-mediated adipogenesis, the RNA-seq was performed to find out the possible Trim28-regulated genes. Dlk1 (delta-like homolog 1) was increased in Trim28 knockdown 3T3-L1 cells both untreated and induced to differentiation. Dlk1 is an imprinted gene and known as an inhibitor of adipogenesis. Further knockdown of Dlk1 in Trim28 knockdown 3T3-L1 would rescue cell differentiation. The epigenetic analysis showed that DNA methylation of Dlk1 promoter and differentially methylated regions (DMRs) was not altered significantly in Trim28 knockdown cells. However, compared to control cells, the histone methylation on the Dlk1 promoter was increased at H3K4 and decreased at H3K27 in Trim28 knockdown cells. Finally, we found Trim28 might be recruited by transcription factor E2f1 to regulate Dlk1 expression. The results imply Trim28-Dlk1 axis is critical for adipogenesis.


Subject(s)
Adipogenesis/genetics , Calcium-Binding Proteins/genetics , DNA Methylation/genetics , Membrane Proteins/genetics , Tripartite Motif-Containing Protein 28/genetics , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Mice , RNA-Seq , Signal Transduction/genetics
20.
Int Immunopharmacol ; 80: 106150, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31958741

ABSTRACT

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infections. Previous studies have indicated that lidocaine, an amide local anesthetic, has anti-inflammatory properties; however, the underlying mechanism remains unclear. In this study, we have shown that lidocaine dose-dependently inhibits lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages and that lidocaine protects mice from LPS-induced inflammation. Moreover, we have demonstrated that lidocaine reduces the release of TNF-α and IL-6 through the reduction of the expression of GLUT1 and HK2 to further suppress HIF1α-induced aggravation of inflammatory cascades. Lidocaine can inhibit the enhanced glycolysis and glycolytic capacity induced by LPS in the macrophages. As an inhibitor of PHDs (prolyl hydroxylases), Dimethyloxalylglycine (DMOG) can reduce the anti-inflammatory effects of lidocaine. In conclusion, the present study indicates that lidocaine can be used as a potential therapeutic agent for sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Endotoxemia/drug therapy , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Lidocaine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Cytokines/genetics , Endotoxemia/chemically induced , Endotoxemia/genetics , Endotoxemia/immunology , Glucose Transporter Type 1/genetics , Hexokinase/genetics , Lidocaine/pharmacology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...