Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2406147, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38925142

ABSTRACT

High-brightness laser lighting is confronted with crucial challenges in developing laser-excitable color converting materials with effective heat dissipation and super optical performance. Herein, a novel composite of phosphor-in-glass film on transparent diamond (PiGF@diamond) is designed and fabricated via a facile low-temperature co-sintering strategy. The as-prepared La3Si6N11:Ce3+ (LSN:Ce) PiGF@diamond with well-retained optical properties of raw phosphor shows a record thermal conductivity of ≈599 W m-1 K-1, which is about 60 times higher than that of currently well-used PiGF@sapphire (≈10 W m-1 K-1). As a consequence, this color converter can bear laser power density up to 40.24 W mm-2 and a maximum luminance flux of 5602 lm without luminescence saturation due to efficient inhibition of laser-induced heat accumulation. By further supplementing red spectral component of CaAlSiN3:Eu2+ (CASN:Eu), the PiGF@diamond based white laser diode is successfully constructed, which can yield warm white light with a high color rendering index of 89.3 and find practical LD-driven applications. The findings will pave the way for realizing the commercial application of PiGF composite in laser lighting and display.

2.
Inorg Chem ; 63(17): 7984-7991, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38622961

ABSTRACT

The "cyan gap" is the bottleneck problem in violet-driven full-spectrum white-light-emitting diodes (wLEDs) in healthy lighting. Accordingly, we develop a novel broadband-blue-cyan emission Na3KMg7(PO4)6-x(BO3)x:Eu2+ (NKMPB:Eu2+) phosphor via crystal-site engineering. This phosphor is derived from the Na3KMg7(PO4)6:Eu2+ phosphor, which shows desired abundant cyan emissive components. A comparative study is conducted to reveal the microstructure-property relationship and the key influential factors to its spectrum distribution. It can be found that the introduced (BO3)3- units can manipulate the site-selective occupation of Eu2+ activators, asymmetrically broadening the emission spectrum in NKMPB:Eu2+. Considering detailed luminescence performance analysis and the density functional theory calculations, a new substitution pathway of Eu2+ is created by substituting (PO4)3- with (BO3)3- units, making partial Eu2+ ions enter the Mg2+ (CN = 5, CN = 6) crystallographic sites, and yielding an extra emission band at 600 nm (16667 cm-1) and especially 501 nm (19960 cm-1). Meanwhile, a high-color-quality full-spectrum-emitting wLEDs was fabricated, upon 100 mA forward-bias current driven. Due to the achieved extra cyan emissive components of NKMPB:Eu2+, the constructed NKMPB:Eu2+-based wLEDs show better color rendering ability (∼90.9) than that of Na3KMg7(PO4)6:Eu2+-based wLEDs (∼86.3), and also demonstrate its great potential in full-spectrum healthy lighting.

4.
Nat Commun ; 15(1): 2169, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461277

ABSTRACT

Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field-twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses the dispersion like photons nor carries the band structure as electrons, the real magic angle in electrons or photons is ill-defined for heat diffusion, making it elusive to understand or design any thermal analogue of magic angle. Here, we introduce and experimentally validate the twisted thermotics in a twisted diffusion system by judiciously tailoring thermal coupling, in which twisting an analog thermal magic angle would result in the function switching from cloaking to concentration. Our work provides insights for the tunable heat diffusion control, and opens up an unexpected branch for twistronics -- twisted thermotics, paving the way towards field manipulation in twisted configurations including but not limited to fluids.

5.
Br J Pharmacol ; 181(11): 1596-1613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38124222

ABSTRACT

BACKGROUND AND PURPOSE: Oat ß-glucan could ameliorate epidermal hyperplasia and accelerate epidermal barrier repair. Dectin-1 is one of the receptors of ß-glucan and many biological functions of ß-glucan are mediated by Dectin-1. Dectin-1 promotes wound healing through regulating the proliferation and migration of skin cells. Thus, this study aimed to investigate the role of oat ß-glucan and Dectin-1 in epidermal barrier repair. EXPERIMENTAL APPROACH: To investigate the role of Dectin-1 in the epidermal barrier, indicators associated with the recovery of a damaged epidermal barrier, including histopathological changes, keratinization, proliferation, apoptosis, differentiation, cell-cell junctions and lipid content were compared between WT and Dectin-1-/- mice. Further, the effect of oat ß-glucan on the disruption of the epidermal barrier was also compared between WT and Dectin-1-/- mice. KEY RESULTS: Dectin-1 deficiency resulted in delayed recovery and marked keratinization, as well as abnormal levels of keratinocyte differentiation, cell-cell junctions and lipid synthesis during the restoration of the epidermal barrier. Oat ß-glucan significantly reduces epidermal hyperplasia, promotes epidermal differentiation, increases cell-cell junction expression, promotes lipid synthesis and ultimately accelerates the recovery of damaged epidermal barriers via Dectin-1. Oat ß-glucan could promote CaS receptor expression and activate the PPAR-γ signalling pathway via Dectin-1. CONCLUSION AND IMPLICATIONS: Oat ß-glucan promote the recovery of damaged epidermal barriers through promoting epidermal differentiation, increasing the expression of cell-cell junctions and lipid synthesis through Dectin-1. Dectin-1 deficiency delay the recovery of epidermal barriers, which indicated that Dectin-1 may be a potential target in epidermal barrier repair.


Subject(s)
Cell Differentiation , Epidermis , Lectins, C-Type , Up-Regulation , beta-Glucans , Animals , Lectins, C-Type/metabolism , beta-Glucans/pharmacology , Epidermis/metabolism , Epidermis/drug effects , Cell Differentiation/drug effects , Mice , Up-Regulation/drug effects , Mice, Knockout , Mice, Inbred C57BL , Intercellular Junctions/drug effects , Intercellular Junctions/metabolism , Male , Wound Healing/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Lipid Metabolism/drug effects
6.
Research (Wash D C) ; 6: 0202, 2023.
Article in English | MEDLINE | ID: mdl-37529624

ABSTRACT

Flowing water can be used as an energy source for generators, providing a major part of the energy for daily life. However, water is rarely used for information or electronic devices. Herein, we present the feasibility of a polarized liquid-triggered photodetector in which polarized water is sandwiched between graphene and a semiconductor. Due to the polarization and depolarization processes of water molecules driven by photogenerated carriers, a photo-sensitive current can be repeatedly produced, resulting in a high-performance photodetector. The response wavelength of the photodetector can be fine-tuned as a result of the free choice of semiconductors as there is no requirement of lattice match between graphene and the semiconductors. Under zero voltage bias, the responsivity and specific detectivity of Gr/NaCl (0.5 M)W/N-GaN reach values of 130.7 mA/W and 2.3 × 109 Jones under 350 nm illumination, respectively. Meanwhile, using a polar liquid photodetector can successfully read the photoplethysmography signals to produce accurate oxygen blood saturation and heart rate. Compared with the commercial pulse oximetry sensor, the average errors of oxygen saturation and heart rate in the designed photoplethysmography sensor are ~1.9% and ~2.1%, respectively. This study reveals that water can be used as a high-performance photodetector in informative industries.

7.
Adv Sci (Weinh) ; 10(2): e2204058, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36394152

ABSTRACT

Despite the fascinating optoelectronic properties of graphene, the power conversion efficiency (PCE) of graphene based solar cells remains to be lifted up. Herein, it is experimentally shown that the graphene/quantum wells/GaAs heterostructure solar cell can reach a PCE of 20.2% and an open-circuit voltage (Voc ) as high as 1.16 V at 90 K. The high efficiency is a result of carrier multiplication (CM) effect of graphene in the graphene/GaAs heterostructure. Especially, the external quantum efficiency (EQE) in the ultraviolet wavelength can be improved up to 72.2% based on the heterostructure constructed by graphene/In0.15 Ga0.85 As/GaAs0.75 P0.25 quantum wells/GaAs. The EQE increases as the light wavelength decreases, which indicates more carriers can be effectively excited by the higher energy photons through CM effect. Owing to these physical characters, the graphene/GaAs heterostructure solar cell will provide a possible way to exceed Shockley-Queisser (S-Q) limit.

8.
Research (Wash D C) ; 2022: 9878352, 2022.
Article in English | MEDLINE | ID: mdl-36204249

ABSTRACT

The excitation, rebound, and transport process of hot carriers (HCs) inside dynamic diode (DD) based on insulators has been rarely explored due to the original stereotyped in which it was thought that the insulators are nonconductive. However, the carrier dynamics of DD is totally different from the static diode, which may bring a subverting insight of insulators. Herein, we discovered insulators could be conductive under the framework of DD; the HC process inside the rebounding procedure caused by the disappearance and reestablishment of the built-in electric field at the interface of insulator/semiconductor heterostructure is the main generation mechanism. This type of DD can response fast up to 1 µs to mechanical excitation with an output of ~10 V, showing a wide band frequency response under different input frequencies from 0 to 40 kHz. It can work under extreme environments; various applications like underwater communication network, self-powered sensor/detector in the sea environment, and life health monitoring can be achieved.

9.
iScience ; 25(10): 105051, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36147960

ABSTRACT

Thermionic energy converters are solid-state heat engines to produce electricity with significant potential, whereas the output voltage is constrained by the work function difference between cathode and anode. In this work, we originally apply a graphene-on-semiconductor heterojunction anode to a thermionic-photovoltaic (TIPV) converter to output additional voltage. Thermionic electrons are injected into the graphene layer and then recombined with photogenerated holes. Photogenerated electrons are extracted from the conduction band and reinjected into the cathode through an external load. A proof-of-concept demonstration of the TIPV converter is developed with barium surface-engineered cathode and anode. Open-circuit voltage is increased from ∼0.9 to ∼1.9 V by comparing with an identical configuration without graphene layer. The TIPV converter yields a power generation density of 2.7 kW/m2 with an electronic efficiency of ∼27%. This work paves the way for the development of TIPV converter toward high power density.

10.
Opt Lett ; 47(14): 3455-3458, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838702

ABSTRACT

In this work,  hexagonal boron nitride (h-BN) nanocrystals as functional additives in a phosphor-in-glass film are shown to substantially increase the luminous performance driven by a blue laser. Microstructural and spectroscopic studies reveal that h-BN particles distributed over the whole glass matrix build in situ a local heat conductive path which effectively accelerates heat dissipation and so greatly relieves the "thermal run-away effect". The developed composite material with fine thermal manipulation may be a promising phosphor color converter for high-power-density laser-driven lighting.

11.
Adv Sci (Weinh) ; 9(21): e2200642, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35607294

ABSTRACT

Dynamic semiconductor diode generators (DDGs) offer a potential portable and miniaturized energy source, with the advantages of high current density, low internal impedance, and independence of the rectification circuit. However, the output voltage of DDGs is generally as low as 0.1-1 V, owing to energy loss during carrier transport and inefficient carrier collection, which requires further optimization and a deeper understanding of semiconductor physical properties. Therefore, this study proposes a vertical graphene/silicon DDG to regulate the performance by realizing hot carrier transport and collection. With instant contact and separation of the graphene and silicon, hot carriers are generated by the rebounding process of built-in electric fields in dynamic graphene/silicon diodes, which can be collected within the ultralong hot electron lifetime of graphene. In particular, monolayer graphene/silicon DDG outputs a high voltage of 6.1 V as result of ultrafast carrier transport between the monolayer graphene and silicon. Furthermore, a high current of 235.6 nA is generated due to the carrier multiplication in graphene. A voltage of 17.5 V is achieved under series connection, indicating the potential to supply electronic systems through integration design. The graphene/silicon DDG has applications as an in situ energy source for harvesting mechanical energy from the environment.

12.
Opt Lett ; 47(6): 1431-1434, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290331

ABSTRACT

It is demonstrated that the incorporation of K+ into CsPb(Br,I)3 perovskite quantum dot glass leads to the simultaneous increases of quantum efficiency and phase stability. The latent mechanism is analyzed via the microstructural and spectroscopic studies. The constructed prototype white-light-emitting diode device yields an ultra-wide color gamut attaining 96% Rec. 2020 standard.

13.
Nanoscale ; 13(46): 19663-19670, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34816864

ABSTRACT

In situ constructing program-designed nanostructures via laser-direct-writing (LDW) has proved to be a reliable strategy for optical storage (OS). Herein, a kind of low-melting Ag+-doped TeO2-ZnO-Na2O (TZN) tellurite glass has been demonstrated as an ideal LDW OS medium. Microstructural and spectroscopic studies reveal the generation of molecule-like Agmx+ nanoclusters featured with a broad emission band in the orange-red region upon laser irradiation. Probing the laser-glass interaction yields evidences of the spatial distribution of Ag species responsive to laser-induced thermoelastic pressure wave oscillation, as well as the heat-driven migration/aggregation of Ag species along the radial direction of the laser spot. Raman analyses disclose the loose network of TZN-glass convenient for Ag+ mobility and the increased network connectivity when Agmx+ nanoclusters are precipitated out. Combined with the XPS result of Ag+ → Ag0 reduction, the possible formation mechanism of Ag nanoclusters stabilized in glass has been proposed. In a proof-of-concept experiment, 3D volumetric OS in the TZN glass has been demonstrated, showing optical data encoding/decoding in the form of characters and image patterns.

14.
Research (Wash D C) ; 2021: 7505638, 2021.
Article in English | MEDLINE | ID: mdl-33623921

ABSTRACT

There is a rising prospective in harvesting energy from the environment, as in situ energy is required for the distributed sensors in the interconnected information society, among which the water flow energy is the most potential candidate as a clean and abundant mechanical source. However, for microscale and unordered movement of water, achieving a sustainable direct-current generating device with high output to drive the load element is still challenging, which requires for further exploration. Herein, we propose a dynamic PN water junction generator with moving water sandwiched between two semiconductors, which outputs a sustainable direct-current voltage of 0.3 V and a current of 0.64 µA. The mechanism can be attributed to the dynamic polarization process of water as moving dielectric medium in the dynamic PN water junction, under the Fermi level difference of two semiconductors. We further demonstrate an encapsulated portable power-generating device with simple structure and continuous direct-current voltage output of 0.11 V, which exhibits its promising potential application in the field of wearable devices and the IoTs.

15.
RSC Adv ; 11(31): 19106-19112, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478643

ABSTRACT

With the fast development of the internet of things (IoTs), distributed sensors are frequently used and small and portable power sources are highly demanded. However, current portable power sources such as lithium batteries have low capacity and need to be replaced or recharged frequently. A portable power source which can continuously generate electrical power in situ will be an ideal solution. Herein, we demonstrate a wind driven semiconductor electricity generator based on a dynamic Schottky junction, which can output a continuous direct current with an average value of 4.4 mA (with a maximum value of 8.4 mA) over 740 seconds. Compared with a previous metal/semiconductor generator, the output current is one thousand times higher. Furthermore, this wind driven generator has been used as a turn counter, due to its stable output, and also to drive a graphene ultraviolet photodetector, which shows a responsivity of 35.8 A W-1 under 365 nm ultraviolet light. Our research provides a feasible method to achieve wind power generation and power supply for distributed sensors in the future.

16.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371474

ABSTRACT

Silicon-based light emitting diodes (LED) are indispensable elements for the rapidly growing field of silicon compatible photonic integration platforms. In the present study, graphene has been utilized as an interfacial layer to realize a unique illumination mechanism for the silicon-based LEDs. We designed a Si/thick dielectric layer/graphene/AlGaN heterostructured LED via the van der Waals integration method. In forward bias, the Si/thick dielectric (HfO2-50 nm or SiO2-90 nm) heterostructure accumulates numerous hot electrons at the interface. At sufficient operational voltages, the hot electrons from the interface of the Si/dielectric can cross the thick dielectric barrier via the electron-impact ionization mechanism, which results in the emission of more electrons that can be injected into graphene. The injected hot electrons in graphene can ignite the multiplication exciton effect, and the created electrons can transfer into p-type AlGaN and recombine with holes resulting a broadband yellow-color electroluminescence (EL) with a center peak at 580 nm. In comparison, the n-Si/thick dielectric/p-AlGaN LED without graphene result in a negligible blue color EL at 430 nm in forward bias. This work demonstrates the key role of graphene as a hot electron active layer that enables the intense EL from silicon-based compound semiconductor LEDs. Such a simple LED structure may find applications in silicon compatible electronics and optoelectronics.

17.
Opt Express ; 28(21): 31603-31610, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115130

ABSTRACT

Since the discovery of two dimensional (2D) materials, there has been a gold rush for van der Waals integrated 2D material heterostructure based optoelectronic devices. Van der Waals integration involves the physical assembly of the components of the device. In the present work, we extended van der Waals integration from 2D materials to three-dimensional (3D) materials, and herein we uniquely designed a van der Waals contacted light emitting diode based on MoOx staked ZnO/GaN heterostructure. The presence of the MoOx layer between n-type ZnO and p-type GaN leads to the confinement of electrons and an increase in the electron charge density at n-type ZnO. The n-type MoOx, a well-known hole injection layer, favors the availability of holes at the ZnO site, leading to the efficient recombination of electrons and holes at the ZnO site, which results in predominant high-intensity UV-EL emission around 380 nm in both forward and reverse bias.

18.
Research (Wash D C) ; 2020: 5714754, 2020.
Article in English | MEDLINE | ID: mdl-32607498

ABSTRACT

Searching for light and miniaturized functional device structures for sustainable energy gathering from the environment is the focus of energy society with the development of the internet of things. The proposal of a dynamic heterojunction-based direct current generator builds up new platforms for developing in situ energy. However, the requirement of different semiconductors in dynamic heterojunction is too complex to wide applications, generating energy loss for crystal structure mismatch. Herein, dynamic homojunction generators are explored, with the same semiconductor and majority carrier type. Systematic experiments reveal that the majority of carrier directional separation originates from the breaking symmetry between carrier distribution, leading to the rebounding effect of carriers by the interfacial electric field. Strikingly, NN Si homojunction with different Fermi levels can also output the electricity with higher current density than PP/PN homojunction, attributing to higher carrier mobility. The current density is as high as 214.0 A/m2, and internal impedance is as low as 3.6 kΩ, matching well with the impedance of electron components. Furthermore, the N-i-N structure is explored, whose output voltage can be further improved to 1.3 V in the case of the N-Si/Al2O3/N-Si structure, attributing to the enhanced interfacial barrier. This approach provides a simple and feasible way of converting low-frequency disordered mechanical motion into electricity.

19.
Research (Wash D C) ; 2020: 3850389, 2020.
Article in English | MEDLINE | ID: mdl-32566930

ABSTRACT

Recharging the batteries by wireless energy facilitates the long-term running of the batteries, which will save numerous works of battery maintenance and replacement. Thus, harvesting energy form radio frequency (RF) waves has become the most promising solution for providing the micropower needed for wireless sensor applications, especially in a widely distributed 4G/5G wireless network. However, the current research on rectenna is mainly focused on the integrated antenna coupled with metal-insulator-metal tunneling diodes. Herein, by adopting the plasmon excitation of graphene and quantum tunneling process between graphene and GaAs or GaN, we demonstrated the feasibility of harvesting energy from the 915 MHz wireless source belonging to 5G in the FR1 range (450 MHz-6 GHz) which is also known as sub-6G. The generated current and voltage can be observed continuously, with the direction defined by the built-in field between graphene and GaAs and the incident electromagnetic waves treated as the quantum energy source. Under the RF illumination, the generated current increases rapidly and the value can reach in the order of 10-8-10-7 A. The harvester can work under the multiple channel mode, harvesting energy simultaneously from different flows of wireless energy in the air. This research will open a new avenue for wireless harvesting by using the ultrafast process of quantum tunneling and unique physical properties of graphene.

20.
Light Sci Appl ; 9: 22, 2020.
Article in English | MEDLINE | ID: mdl-32133125

ABSTRACT

The launch of the big data era puts forward challenges for information preservation technology, both in storage capacity and security. Herein, a brand new optical storage medium, transparent glass ceramic (TGC) embedded with photostimulated LiGa5O8: Mn2+ nanocrystals, capable of achieving bit-by-bit optical data write-in and read-out in a photon trapping/detrapping mode, is developed. The highly ordered nanostructure enables light-matter interaction with high encoding/decoding resolution and low bit error rate. Importantly, going beyond traditional 2D optical storage, the high transparency of the studied bulk medium makes 3D volumetric optical data storage (ODS) possible, which brings about the merits of expanded storage capacity and improved information security. Demonstration application confirmed the erasable-rewritable 3D storage of binary data and display items in TGC with intensity/wavelength multiplexing. The present work highlights a great leap in photostimulated material for ODS application and hopefully stimulates the development of new multi-dimensional ODS media.

SELECTION OF CITATIONS
SEARCH DETAIL
...