Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35888229

ABSTRACT

The railway wheel is the key component of high-speed railway train. To assure the safety in service, higher requirements are put forward in this study for the composition, microstructure uniformity, and comprehensive properties of wheel materials. In this paper, the high throughput quantitative distribution characterization methods of composition, microstructure, inclusions and Vickers hardness of high-speed railway wheel materials based on the spark source original position analysis technique, high throughput scanning electron microscope (SEM) combined with image batch processing technology, and automatic two-dimensional quantitative distribution analysis technique of inclusions and micro hardness have been studied. The distribution trend of the content of nine elements, size and quantity of sulfides and oxides, ferrite area fraction, and Vickers hardness from the wheel tread surface to the radial depth of about 50 mm below the surface has been discussed. The influence of inclusions distribution on the element segregation and the effect of rim-chilling process with different water spraying angle on the distribution of microstructure and micro hardness have been investigated. It was found that unsynchronized cooling on both sides of the rim altered the phase behavior of ferrite and pearlite and obvious inhomogeneity distribution of ferrite appeared, which led to the asymmetrical Vickers hardness in areas near or away from the flange. Based on the quantitative characterization of area fraction and micro hardness on the same location of wheel rim, a statistical mapping relationship between ferrite area fraction and Vickers hardness was established.

SELECTION OF CITATIONS
SEARCH DETAIL
...