Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 241: 124957, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31590021

ABSTRACT

Instead of manual sampling in a random way near a source area, this study used trigger sampling guided by an analyzer at a fixed site near a refinery plant to obtain the chemical composition of volatile organic compounds (VOCs) representative of the source. The analyzer was built in-house to measure total VOC (TVOC) levels by subtracting methane from total combustible organic compounds (TOC) with flame ionization detection. The analyzer with minute resolution provided instantaneous measurements of TVOCs to trigger canister sampling at the moments of VOC plumes in a source area. The chemical composition of the 13 trigger samples were compared with the other non-trigger samples randomly collected either within the refinery or on an urban street. All samples were analyzed by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) for detailed speciation. High agreement in total VOC abundance between the analyzer and GC-MS/FID indicates internal consistency of the two techniques and the robustness of the TVOC analyzer to guide sampling of VOC plumes. The trigger samples showing very high consistency in the overall composition imply that sampling at the right moments of plume arrivals can facilitate characterization of the source profiles, which can hardly be achieved by random sampling. The coupling of the fast-and-slow analytical techniques to guide sampling is proven to be an effective means to probe source characteristics.


Subject(s)
Environmental Monitoring/methods , Flame Ionization/methods , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Industry
2.
Dalton Trans ; 46(21): 6985-6993, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28513731

ABSTRACT

In this work, we present a Ag@Au nanoprism-metal-organic framework-paper based glucose sensor for rapid, sensitive, single-use and quantitative glucose determination in human serum. To achieve painless measurement of glucose with a non-invasive detection methodology, this biosensor was further tested in human urine. In this approach, a new hybrid-Ag@Au nanoprism loaded in close proximity to micrometer sized coordination polymers as phosphorescent luminophores significantly enhanced the emission intensity due to metal-enhanced phosphorescence and worked as reaction sites to support more dissolved oxygen. Reports of enhanced phosphorescence intensity are relatively rare, especially at room temperature. The true enhancement factor of Ag@Au-phosphorescent metal-organic frameworks on paper was deduced to be 110-fold, making it a better optical type glucose meter. The results demonstrate the validity of the intensity enhancement effect of the excitation of the overlap of the emission band of a luminophore with the surface plasmon resonance band of Ag@Au nanoprisms. Ag@Au nanoprisms were used not only to improve the detection limit of glucose sensing but also to extend the glucose sensing range by enhancing the oxygen oxidation efficiency. The oxidation of glucose as glucose oxidase is accompanied by oxygen consumption, which increases the intensity of the phosphorescence emission. The turn-on type paper-based biosensor exhibits a rapid response (0.5 s), a low detection limit (0.038 mM), and a wide linear range (30 mM to 0.05 mM), as well as good anti-interference, long-term longevity and reproducibility. Finally, the biosensor was successfully applied to the determination of glucose in human serum and urine.


Subject(s)
Glucose/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Silver/chemistry , Biosensing Techniques , Blood Glucose/analysis , Calcium Chloride/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Humans , Limit of Detection , Oxidation-Reduction , Paper
SELECTION OF CITATIONS
SEARCH DETAIL
...