Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2021: 5526053, 2021.
Article in English | MEDLINE | ID: mdl-34471466

ABSTRACT

Copper/zinc superoxide dismutase (SOD1) can clear cisplatin- (CP-) induced excessive reactive oxygen species (ROS), but exogenous SOD1 cannot enter cells because of its low biomembrane permeability. Cell-penetrating peptides (CPPs) can rapidly cross plasma membranes. This study is aimed at identifying an efficient and stable CPP-SOD1 and investigating its effects on CP-induced nephrotoxicity. We recombined SOD1 with 14 different CPPs and purified them using an NTA-Ni2+ column. In in vitro experiments, CPPs-SOD1 cell membrane penetration ability and JNK/p38 MAPK signaling pathway were evaluated using Western blotting. ROS production, mitochondrial membrane potential (MMP), and cell apoptosis were determined using flow cytometry and immunofluorescence staining in VERO and HK-2 cells. For in vivo experiments, mice were administered PSF-SOD1 for 2 h before cotreatment with a single CP injection for an additional 4 days. Blood and kidney samples were collected for renal function assessment (creatinine, urea nitrogen, histopathology, TUNEL assay, and JNK/p38 MAPK signaling pathway). Compared with TAT-SOD1, we found that PSF-SOD1 is more efficient at crossing the cell membrane and is stable after transduction into cells. Pretreatment with PSF-SOD1 inhibited CP-induced apoptosis, ROS generation, and JNK/p38 MAPK activation and restored CP-induced MMP loss in VERO and HK-2 kidney cells. Treatment of mice with PSF-SOD1 inhibited CP-induced serum creatinine, blood urea nitrogen elevation, and JNK/p38 MAPK activation. H&E staining and TUNEL assay indicated that kidney tissue damage was alleviated following PSF-SOD1 pretreatment. Overall, PSF-SOD1 ameliorated CP-induced renal damage by partially reducing oxidative stress and cell apoptosis by regulating JNK/p38 MAPK signaling pathway and might be a better cytoprotective agent than TAT-SOD1.


Subject(s)
Cell-Penetrating Peptides/therapeutic use , Cisplatin/adverse effects , Kidney Diseases/chemically induced , Oxidative Stress/drug effects , Superoxide Dismutase/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell-Penetrating Peptides/pharmacology , Male , Mice , Signal Transduction , Superoxide Dismutase/pharmacology
2.
Front Chem ; 7: 280, 2019.
Article in English | MEDLINE | ID: mdl-31157200

ABSTRACT

Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (K d) = 1.9 × 10-11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders.

3.
J Craniomaxillofac Surg ; 47(2): 341-348, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30579746

ABSTRACT

BACKGROUND: Cranioplasty is a surgical procedure used to treat a bone defect or deformity in the skull. To date, there is little consensus on the standard-of-care for graft materials used in such a procedure. Graft materials must have sufficient mechanical strength to protect the underlying brain as well as the ability to integrate and support new bone growth. Also, the ideal graft material should be individually customized to the contours of the defect to ensure a suitable aesthetic outcome for the patient. PURPOSE: Customized 3D-printed scaffolds comprising of polycaprolactone-ß-tricalcium phosphate (PCL-TCP) have been developed with mechanical properties suitable for cranioplasty. Osteostimulation of PCL-TCP was enhanced through the addition of a bone matrix-mimicking heparan sulphate glycosaminoglycan (HS3) with increased affinity for bone morphogenetic protein-2 (BMP-2). Efficacy of this PCL-TCP/HS3 combination device was assessed in a rat critical-sized calvarial defect model. METHOD: Critical-sized defects (5 mm) were created in both parietal bones of 19 Sprague Dawley rats (Male, 450-550 g). Each cranial defect was randomly assigned to 1 of 4 treatment groups: (1) A control group consisting of PCL-TCP/Fibrin alone (n = 5); (2) PCL-TCP/Fibrin-HSft (30 µg) (n = 6) (HSft is the flow-through during HS3 isolation that has reduced affinity for BMP-2); (3) PCL-TCP/Fibrin-HS3 (5 µg) (n = 6); (4) PCL-TCP/Fibrin-HS3 (30 µg) (n = 6). Scaffold integration and bone formation was evaluated 12-weeks post implantation by µCT and histology. RESULTS: Treatment with PCL-TCP/Fibrin alone (control) resulted in 23.7% ± 1.55% (BV/TV) of the calvarial defect being filled with new bone, a result similar to treatment with PCL-TCP/Fibrin scaffolds containing either HSft or HS3 (5 µg). At increased amounts of HS3 (30 µg), enhanced bone formation was evident (BV/TV = 38.6% ± 9.38%), a result 1.6-fold higher than control. Further assessment by 2D µCT and histology confirmed the presence of enhanced bone formation and scaffold integration with surrounding host bone only when scaffolds contained sufficient bone matrix-mimicking HS3. CONCLUSION: Enhancing the biomimicry of devices using a heparan sulphate with increased affinity to BMP-2 can serve to improve the performance of PCL-TCP scaffolds and provides a suitable treatment for cranioplasty.


Subject(s)
Biomimetic Materials/therapeutic use , Calcium Phosphates/therapeutic use , Heparitin Sulfate/therapeutic use , Polyesters/therapeutic use , Skull/surgery , Tissue Scaffolds , Animals , Biomimetic Materials/administration & dosage , Calcium Phosphates/administration & dosage , Heparitin Sulfate/administration & dosage , Humans , Imaging, Three-Dimensional , Male , Polyesters/administration & dosage , Rats , Rats, Sprague-Dawley , Skull/diagnostic imaging
4.
Spine J ; 18(5): 818-830, 2018 05.
Article in English | MEDLINE | ID: mdl-29269312

ABSTRACT

BACKGROUND CONTEXT: Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site. PURPOSE: We recently developed a scaffold consisting of silane-modified PCL-TCP (PCL-siTCP) with mechanical properties that can withstand the higher loads generated in the spine. To ensure the scaffold more closely mimicked the bone matrix, we incorporated collagen (Col) and a heparan sulfate glycosaminoglycan sugar (HS3) with increased affinity for heparin-binding proteins such as bone morphogenetic protein-2 (BMP-2). The osteostimulatory characteristic of this novel device delivering exogenous BMP2 was assessed in vitro and in vivo as a prelude to future spinal fusion studies with this device. STUDY DESIGN/SETTING: A combination of cell-free assays (BMP2 release), progenitor cell-based assays (BMP2 bioactivity, cell proliferation and differentiation), and rodent ectopic bone formation assays was used to assess the osteostimulatory characteristics of the PCL-siTCP-based scaffolds. MATERIALS AND METHODS: Freshly prepared rat mesenchymal stem cells were used to determine reparative cell proliferation and differentiation on the PCL-siTCP-based scaffolds over a 28-day period in vitro. The bioactivity of BMP2 released from the scaffolds was assessed on progenitor cells over a 28-day period using ALP activity assays and release kinetics as determined by enzyme-linked immunosorbent assay. For ectopic bone formation, intramuscular placement of scaffolds into Sprague Dawley rats (female, 4 weeks old, 120-150 g) was achieved in five animals, each receiving four treatments randomized for location along the limb. The four groups tested were (1) PCL-siTCP/Col (5-mm diameter×1-mm thickness), PCL-siTCP/Col/BMP2 (5 µg), (3) PCL-siTCP/Col/HS3 (25 µg), and (4) PCL-siTCP/Col/HS3/BMP2 (25 and 5 µg, respectively). Bone formation was evaluated at 8 weeks post implantation by microcomputed tomography (µCT) and histology. RESULTS: Progenitor cell-based assays (proliferation, mRNA transcripts, and ALP activity) confirmed that BMP2 released from PCL-siTCP/Col/HS3 scaffolds increased ALP expression and mRNA levels of the osteogenic biomarkers Runx2, Col1a2, ALP, and bone gla protein-osteocalcin compared with devices without HS3. When the PCL-siTCP/Col/HS3/BMP2 scaffolds were implanted into rat hamstring muscle, increased bone formation (as determined by two-dimensional and three-dimensional µCTs and histologic analyses) was observed compared with scaffolds lacking BMP2. More consistent increases in the amount of ectopic bone were observed for the PCL-siTCP/Col/HS3/BMP2 implants compared with PCL-siTCP/Col/BMP2. Also, increased mineralizing tissue within the pores of the scaffold was seen with modified-tetrachrome histology, a result confirmed by µCT, and a modest but detectable increase in both the number and the thickness of ectopic bone structures were observed with the PCL-siTCP/Col/HS3/BMP2 implants. CONCLUSIONS: The combination of PCL-siTCP/Col/HS3/BMP2 thus represents a promising avenue for further development as a bone graft alternative for spinal fusion surgery.


Subject(s)
Bone Regeneration , Guided Tissue Regeneration/methods , Mesenchymal Stem Cell Transplantation/methods , Spinal Fusion/methods , Tissue Scaffolds/chemistry , Animals , Bone Morphogenetic Protein 2/pharmacology , Calcium Phosphates/chemistry , Cell Proliferation , Cells, Cultured , Collagen/metabolism , Female , Heparitin Sulfate/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Polyesters/chemistry , Rats , Rats, Sprague-Dawley
5.
ACS Appl Mater Interfaces ; 8(39): 26309-26318, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27602505

ABSTRACT

Antireflective (AR) silica/polymer composite coatings on glass and poly(methyl methacrylate) (PMMA) substrates were prepared by silica mineralization of layer-by-layer (LbL) assembled films composed of polystyrene-block-poly(l-lysine)/poly(l-glutamic acid) (PS-b-PLL/PGA) complex vesicles without any post-treatments. PS-b-PLL AB and A2B block copolymers with appropriate block ratio can self-assemble to form vesicles, which can be deposited onto substrates without dissociation. Silica deposition specifically onto the complex vesicles in the multilayer films through amine-catalyzed polycondensation results in the continuous, intact composite coatings comprising vesicular nanostructures, which provided an additional parameter for tuning their optical properties. The film thickness and porosity are mainly dictated by the bilayer number and the degree of deformation/fission of vesicles upon complexation and mineralization, depending on polymer composition. The coated PMMA substrate with maximum transmission over 98% can be achieved at the optimized wavelength region. The AR composite films were mechanically stable to withstand both the wipe and adhesion tests due to the preparation of continuous, intact films. This study demonstrated that the concept of preparing composite films comprising vesicular nanostructures through the combination of LbL assembly and biomineralization is feasible.

6.
Nanoscale ; 8(4): 2367-77, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26752150

ABSTRACT

We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting more than 6% increase in transmittance in the near UV/visible spectral range can be obtained at an optimized refractive index, thickness, and surface roughness. The abrasion test showed that the silica coatings exhibited sufficient structural durability due to continuous silica nanostructures and low surface roughness. This study demonstrated that nanostructured thin films can be synthesized for AR coatings using the synergy between the LbL assembly technique and biomineralization.


Subject(s)
Coated Materials, Biocompatible/chemistry , Membranes, Artificial , Polyglutamic Acid/chemistry , Polylysine/chemistry , Silicon Dioxide/chemistry
7.
Ann Acad Med Singap ; 44(4): 145-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26041638

ABSTRACT

INTRODUCTION: Clinical practice guidelines recommend different levels of dietary protein intake in predialysis chronic kidney disease (CKD) patients. It is unknown how effectively these recommendations perform in a multi-ethnic Asian population, with varied cultural beliefs and diets. We assess the profi le of protein intake in a multi-ethnic Asian population, comparing healthy participants and CKD patients. MATERIALS AND METHODS: We analysed the 24-hour urine collections of the Asian Kidney Disease Study (AKDS) and the Singapore Kidney Function Study (SKFS) to estimate total protein intake (TPI; g/day). We calculated ideal body weight (IDW; kg): 22.99 × height2 (m). Standard statistical tests were applied where appropriate, and linear regression was used to assess associations of continuous variables with protein intake. RESULTS: There were 232 CKD patients and 103 healthy participants with 35.5% diabetics. The mean TPI in healthy participants was 58.89 ± 18.42 and the mean TPI in CKD patients was 53.64 ± 19.39. By US National Kidney Foundation (NKF) guidelines, 29/232 (12.5%) of CKD patients with measured glomerular filtration rate (GFR) <25 (in mL/min/1.73 m2) had a TPI-IDW of <0.6 g/kg/day. By Caring for Australasians with Renal Impairment (CARI) guidelines, 76.3% (177/232) of CKD patients had TPI-IDW >0.75g/kg/ day. By American Dietetic Association (ADA) guidelines, 34.7% (44/127) of CKD patients with GFR <50 had TPI-IDW between 0.6 to 0.8 g/kg/day. Only 1/6 non-diabetic CKD patients with GFR <20 had a protein intake of between 0.3 to 0.5 g/kg/day. A total of 21.9% (25/114) of diabetic CKD patients had protein intake between 0.8 to 0.9 g/kg/day. CONCLUSION: On average, the protein intake of most CKD patients exceeds the recommendations of guidelines. Diabetic CKD patients should aim to have higher protein intakes.


Subject(s)
Asian People , Dietary Proteins/administration & dosage , Renal Insufficiency, Chronic , Adult , Aged , Cross-Sectional Studies , Dietary Proteins/urine , Female , Health Surveys , Humans , Malnutrition/ethnology , Middle Aged , Renal Insufficiency, Chronic/ethnology , Singapore
8.
Acta Biomater ; 9(11): 9098-106, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23871940

ABSTRACT

Bone morphogenetic protein-2 (BMP-2) is known to enhance fracture healing when delivered via a bovine collagen sponge. However, collagen rapidly releases BMP-2 with a high burst phase that is followed by a low sustained phase. As a result, supra-physiological doses of BMP-2 are often required to successfully treat bone defects. High BMP-2 dosing can introduce serious side effects that include edema, bone overgrowth, cyst-like bone formation and significant inflammation. As the release behavior of BMP-2 carriers significantly affects the efficacy of fracture healing, we sought to compare the influence of two BMP-2 delivery matrices with contrasting release profiles on BMP-2 bioactivity and ectopic bone formation. We compared a thiol-modified hyaluronan (Glycosil™) hydrogel that exhibits a low burst followed by a sustained release of BMP-2 to a collagen sponge for the delivery of three different doses of BMP-2, the bioactivities of released BMP-2 and ectopic bone formation. Analysis of bone formation by micro-computed tomography revealed that low burst followed by sustained release of BMP-2 from a hyaluronan hydrogel induced up to 456% more bone compared to a BMP-2 dose-matched collagen sponge that has a high burst and sustained release. This study demonstrates that BMP-2 released with a low burst followed by a sustained release of BMP-2 is more desirable for bone formation. This highlights the therapeutic potential of hydrogels, particularly hyaluronan-based, for the delivery of BMP-2 for the treatment of bone defects and may help abrogate the adverse clinical effects associated with high dose growth factor use.


Subject(s)
Biocompatible Materials/pharmacology , Bone Morphogenetic Protein 2/administration & dosage , Bone Morphogenetic Protein 2/therapeutic use , Collagen/pharmacology , Drug Delivery Systems , Hyaluronic Acid/pharmacology , Ossification, Heterotopic/drug therapy , Transforming Growth Factor beta/administration & dosage , Transforming Growth Factor beta/therapeutic use , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , Cattle , Cell Line , Female , Hydrogels , Mice , Prosthesis Implantation , Rats , Rats, Sprague-Dawley , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Transforming Growth Factor beta/pharmacology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...