Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Anal Chim Acta ; 1312: 342748, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834262

ABSTRACT

Diabetes mellitus is a disorder that affects lipid metabolism. Abnormalities in the lipid droplets (LDs) can lead to disturbances in lipid metabolism, which is a significant feature of diabetic patients. Nevertheless, the correlation between diabetes and the polarity of LDs has received little attention in the scientific literature. In order to detect LDs polarity changes in diabetes illness models, we created a new fluorescence probe LD-DCM. This probe has a stable structure, high selectivity, and minimal cytotoxicity. The probe formed a typical D-π-A molecular configuration with triphenylamine (TPA) and dicyanomethylene-4H-pyran (DCM) as electron donor and acceptor parts. The LD-DCM molecule has an immense solvatochromic effect (λem = 544-624 nm), fluorescence enhancement of around 150 times, and a high sensitivity to polarity changes within the linear range of Δf = 0.28 to 0.32, all due to its distinctive intramolecular charge transfer effect (ICT). In addition, LD-DCM was able to monitor the accumulation of LDs and the reduction of LDs polarity in living cells when stimulated by oleic acid, lipopolysaccharide, and high glucose. More importantly, LD-DCM has also been used effectively to detect polarity differences in organs from diabetic, drug-treated, and normal mice. The results showed that the liver polarity of diabetic mice was lower than that of normal mice, while the liver polarity of drug-treated mice was higher than that of diabetic mice. We believe that LD-DCM has the potential to serve as an efficient instrument for the diagnosis of disorders that are associated with the polarity of LDs.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Humans , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Optical Imaging , Male , Molecular Structure
2.
J Mater Chem B ; 12(21): 5150-5156, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757243

ABSTRACT

Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.


Subject(s)
Fluorescent Dyes , Hydrazines , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Hydrazines/chemistry , Hydrazines/analysis , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Color
3.
Mikrochim Acta ; 191(6): 333, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38753167

ABSTRACT

The COVID-19 pandemic has underscored the urgent need for rapid and reliable strategies for early detection of SARS-CoV-2. In this study, we propose a DNA nanosphere-based crosslinking catalytic hairpin assembly (CCHA) system for the rapid and sensitive SARS-CoV-2 RNA detection. The CCHA system employs two DNA nanospheres functionalized with catalytic hairpin assembly (CHA) hairpins. The presence of target SARS-CoV-2 RNA initiated the crosslinking of DNA nanospheres via CHA process, leading to the amplification of fluorescence signals. As a result, the speed of SARS-CoV-2 diagnosis was enhanced by significantly increasing the local concentration of the reagents in a crosslinked DNA product, leading to a detection limit of 363 fM within 5 min. The robustness of this system has been validated in complex environments, such as fetal bovine serum and saliva. Hence, the proposed CCHA system offers an efficient and simple approach for rapid detection of SARS-CoV-2 RNA, holding substantial promise for enhancing COVID-19 diagnosis.


Subject(s)
COVID-19 , Limit of Detection , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Humans , COVID-19/diagnosis , COVID-19/virology , Nanospheres/chemistry , DNA/chemistry , Inverted Repeat Sequences , Animals , COVID-19 Nucleic Acid Testing/methods , Cattle , Cross-Linking Reagents/chemistry , Saliva/virology
4.
Anal Chim Acta ; 1311: 342733, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816158

ABSTRACT

BACKGROUND: Limb ischemia-reperfusion is a common phenomenon in clinical surgery, which disrupts the balanced physiological response process and ultimately leads to changes in intracellular viscosity. Intracellular viscosity is an important microenvironmental parameter that affects the normal function of organisms, and its level is closely related to many diseases. In addition, oxidative stress in the lower limbs can impair body function, and changes in pressure can lead to changes in the viscosity of limb tissues. Therefore, it is necessary to develop effective tools to detect changes in intracellular viscosity and visualize the progression of hind limb ischemia-reperfusion injury. RESULTS: In order to solve this problem, a near infrared viscometry sensitive fluorescence probe (PH-XQ) with long emission wavelength and stable luminescence performance was designed and synthesized by using oxanthracene derivatives and malononitrile. The fluorescence probe (PH-XQ) has excellent selectivity, high sensitivity, low toxicity, high biocompatibility and excellent detection performance. The fluorescence intensity of the PH-XQ probe at 667 nm is highly sensitive to the change of viscosity. With the increase of viscosity, the fluorescence intensity of probe PH-XQ was significantly enhanced, and the fluorescence enhancement ratio was about 14-fold. In addition, PH-XQ can detect not only changes in viscosity between normal cells and drug-induced inflammatory cells, but also changes in the viscosity of the hind limbs of normal mice and mice after ischemia reperfusion. SIGNIFICANCE: In particular, we are the first to successfully detect changes in handlimb viscosity after ischemia-reperfusion in mice using a probe. This study clearly elucidates changes in viscosity during ischemia-reperfusion of mouse limbs, providing favorable support for the relationship between viscosity and related diseases, and further providing a potential tool for the diagnosis of viscosity-related diseases.


Subject(s)
Fluorescent Dyes , Reperfusion Injury , Animals , Viscosity , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Mice , Reperfusion Injury/diagnostic imaging , Hindlimb , Male , Optical Imaging , Infrared Rays , Humans
5.
J Hazard Mater ; 473: 134685, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797075

ABSTRACT

Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.


Subject(s)
Ethanol , Inflammation , Sulfur Dioxide , Inflammation/chemically induced , Animals , Mice , Ethanol/toxicity , Ethanol/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Docking Simulation , Humans , RAW 264.7 Cells , Lipopolysaccharides/toxicity , Male , Dexamethasone/pharmacology
6.
J Hazard Mater ; 470: 134275, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613954

ABSTRACT

Palladium contaminants can pose risks to human health and the natural environment. Once Pd2+ enters the body, it can bind with DNA, proteins, and other macromolecules, disrupting cellular processes and causing serious harm to health. Therefore, it becomes critical to develop simple, highly selective and precise methods for detecting Pd2+in vivo. Here, we have successfully developed the first activated second near-infrared region fluorescence (NIR-II FL) and ratio photoacoustic (PA) probe NYR-1 for dual-modal accurate detection of Pd2+ levels. NYR-1 is capable of rapidly (< 60 s) and sensitively detection of Pd2+ in solution, providing switched on NIR-II FL920 and ratio PA808/PA720 dual-mode signal change. More notably, the probe NYR-1 was successfully used for non-invasive imaging of Pd2+ overload in mouse liver by NIR-II FL/Ratio PA dual-modality imaging technology for the first time. Thus, this work opens up a promising dual-modal detection method for the precise detection of Pd2+ in organisms and in the environment.


Subject(s)
Fluorescent Dyes , Liver , Palladium , Photoacoustic Techniques , Palladium/chemistry , Animals , Liver/diagnostic imaging , Liver/metabolism , Photoacoustic Techniques/methods , Fluorescent Dyes/chemistry , Mice , Optical Imaging , Infrared Rays , Mice, Inbred BALB C , Fluorescence
7.
Luminescence ; 39(4): e4749, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658767

ABSTRACT

Lipid droplet, an intracellular lipid reservoir, is vital for energy metabolism and signal transmission in cells. The viscosity directly affects the metabolism of lipid droplets, and the abnormal viscosity is associated with the occurrence and development of various diseases. Therefore, it is indispensable to develop techniques that can detect viscosity changes in intracellular lipid droplets. Based on twisted intramolecular charge transfer (TICT) mechanism, a novel small-molecule lipid droplet-targeted viscosity fluorescence probe PPF-1 was designed. The probe was easy to synthesize, it had a large Stokes shift, stable optical properties, and low bio-toxicity. Compared to being in methanol solution, the fluorescence intensity of PPF-1 in glycerol solution was increased 26.7-fold, and PPF-1 showed excellent ability to target lipid droplets. Thus, the probe PPF-1 could provide an effective means of detecting viscosity changes of lipid droplets and was of great value for physiological diagnosis of related diseases, pathological analysis, and medical research.


Subject(s)
Fluorescent Dyes , Lipid Droplets , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Lipid Droplets/chemistry , Humans , Molecular Structure , Optical Imaging , Spectrometry, Fluorescence
8.
Anal Methods ; 16(18): 2850-2856, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38644726

ABSTRACT

Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.


Subject(s)
Coumarins , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Coumarins/chemistry , Animals , Lipid Droplets/chemistry , Neoplasms/pathology , Mice , Cell Polarity , Cell Line, Tumor
9.
Food Chem ; 450: 139315, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38615534

ABSTRACT

The monitoring of formaldehyde (FA) in biosystems and real foods is critical for ensuring human health and food safety. However, the development of effective and highly selective assays for sensing FA in organisms and real food samples remains challenging. Herein, a hydrophilic group-modified the probe (Nap-FA) was reported, which utilizes the specific chemical reaction between FA and hydrazino to trigger a "turn-on" fluorescence response. The probe Nap-FA displayed superior selectivity, high sensitivity, good photostability and a low detection limit in the reaction with FA. Notably, Nap-FA has been successfully used for imaging FA in cells, zebrafish, and plant root tissues. In addition, the rationally constructed probe Nap-FA could rapidly and visually detect FA in real food samples. This work provides a prospective approach for monitoring FA in complex biological systems and food fields.


Subject(s)
Fluorescent Dyes , Food Contamination , Formaldehyde , Zebrafish , Formaldehyde/chemistry , Formaldehyde/analysis , Fluorescent Dyes/chemistry , Animals , Humans , Food Contamination/analysis , Limit of Detection , HeLa Cells , Food Analysis
10.
Anal Chim Acta ; 1297: 342330, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438225

ABSTRACT

Cellular micro-environment analysis via fluorescence probe has become a powerful method to explore the early-stage cancer diagnosis and pathophysiological process of relevant diseases. The polarity change of intracellular lipid droplets (LDs) is closely linked with disorders or diseases, which result in various physiological and pathological processes. However, the efficient design strategy for lipid droplet polarity probes with high sensitivity is lacking. To overcome this difficulty, two kinds of LDs-targeting and polarity-sensitive fluorescent probes containing carbazole and siloxane groups were rationally designed and synthesized. With the carbazole-based rotor and bridge-like siloxanes, two probes (P1 and P2) behave high sensitivity to polarity changes and show different fluorescent intensity in normal and cancer cells. Notably, polysiloxanes groups promoted the response sensitivity of the probes dramatically for the polymeric microenvironment. In addition, due to the polarity changes of LDs in cancer cells, the distinct fluorescent intensities in different channels of laser scanning confocal microscope were observed between NHA cell and U87 cells. This work could offer an opportunity to monitor the dynamic behaviors of LDs and further provide a powerful tool to be potentially applied in the early-stage diagnosis of cancer.


Subject(s)
Lipid Droplets , Neoplasms , Polymers , Siloxanes , Carbazoles , Fluorescent Dyes , Neoplasms/diagnostic imaging
11.
J Mater Chem B ; 12(14): 3436-3444, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38497466

ABSTRACT

ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.


Subject(s)
Fluorescent Dyes , Peroxynitrous Acid , Humans , Peroxynitrous Acid/analysis , Rhodamines , HeLa Cells , Inflammation/diagnostic imaging
12.
Angew Chem Int Ed Engl ; 63(21): e202402537, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38509827

ABSTRACT

Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Ferroptosis/drug effects , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Molecular Docking Simulation , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Cyclohexylamines/chemistry , Cyclohexylamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/pharmacology
13.
Angew Chem Int Ed Engl ; 63(2): e202312632, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37849219

ABSTRACT

Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.


Subject(s)
Fluorescent Dyes , Photoacoustic Techniques , Mice , Animals , Fluorescent Dyes/chemistry , Spectrum Analysis , Optical Imaging/methods , Photoacoustic Techniques/methods
14.
Anal Methods ; 16(2): 293-300, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38115761

ABSTRACT

Viscosity, an essential parameter of the cellular microenvironment, has the ability to indicate the condition of living cells. It is closely linked to numerous diseases like Alzheimer's disease, diabetes, and cardiovascular disorders. Therefore, it is necessary to design tools to effectively monitor viscosity changes, which could provide promising avenues for therapeutic interventions in these diseases. Herein, we report a novel mitochondria-targeting fluorescent probe GX-VS which was suitable for the detection of viscosity changes in vivo and in vitro. The probe GX-VS had many advantages such as long emission wavelength (650 nm), large Stokes shift (105 nm), significant fluorescence enhancement (59-fold), high sensitivity, good biocompatibility and so on. Biological experiments showed that the probe could target mitochondria and detect viscosity alterations in HeLa cells. Moreover, it has been successfully utilized to monitor viscosity changes induced by lipopolysaccharides (LPS) in inflammatory zebrafishes and living mice, which further underscored the capacity of GX-VS to explore fluctuations in viscosity within living organisms.


Subject(s)
Fluorescent Dyes , Zebrafish , Humans , Mice , Animals , HeLa Cells , Viscosity , Mitochondria
15.
Anal Chem ; 96(1): 355-363, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38113399

ABSTRACT

Ferroptosis has been confirmed as a potential mediator and an indicator of the severity of liver injury. Despite the fruitful results, there are still two deficiencies in the research on the association between ferroptosis and liver injury. First, iron ions are usually selected as the target bioanalyte, but its detection based on a fluorescent probe is interfered with by specific chemical reaction mechanisms, leading to low sensitivity and poor physiological stability. Second, more efforts were focused on the harmful effects of ferroptosis on liver injury and less involved in the therapeutic value of ferroptosis for liver injury. Hence, in this work, we proposed a new nonreactive analyte (mitochondrial viscosity) as an analysis marker, which can circumvent the challenges caused by specific reaction mechanisms of iron ions. Meanwhile, we constructed a novel label-detection integrated visual probe (VPF) to explore the feasibility of ferroptosis in the treatment of liver injury. As expected, we not only successfully traced the dynamic changes in mitochondrial viscosity but also visualized the changes in cell morphology during induced and inhibited ferroptosis. Conspicuously, this work revealed that liver injury can be alleviated by regulating ferroptosis, confirming the therapeutic value of ferroptosis in liver injury. In addition, a complex biological communication network between ferroptosis and liver injury was constructed by western blotting, providing an important theoretical mechanism for revealing their double-edged sword relationship. This study not only provides a new strategy for studying the complex relationship between ferroptosis and liver injury but also facilitates the future treatment of liver injury.


Subject(s)
Ferroptosis , Blotting, Western , Iron , Liver , Ions
16.
J Mater Chem B ; 11(48): 11620-11625, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38051637

ABSTRACT

As highly dynamic organelles, lysosomes are involved in various physiological processes. The viscosity of lysosomes plays critical roles in maintaining their normal physiological function and abnormal variations of viscosity are associated with many diseases. Monitoring the changes of lysosomal viscosity could contribute to understanding lysosome-related physiological and pathological processes. In this work, based on an indole fluorophore and fluorescent polymer, poly(2-hydroxyethyl methacrylate) (PHEM), a new polymeric fluorescent probe, In-PHEM, with dual responsive sites for tracking changes of lysosomal viscosity is presented. In-PHEM showed excellent fluorescence properties and high photostability. With this robust probe, the variation of the lysosomal viscosity in cells under different physiological conditions, including inducer stimulation, the process of starvation and apoptosis, was monitored using dual-channel imaging. Therefore, this work may provide a powerful tool for monitoring changes of lysosomal viscosity and helping to understand the relationship between the viscosity changes of lysosomes and their related diseases.


Subject(s)
Diagnostic Imaging , Fluorescent Dyes , Humans , Viscosity , HeLa Cells , Lysosomes
17.
Anal Chem ; 95(49): 18029-18038, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38019809

ABSTRACT

Dual-mode imaging of fluorescence-photoacoustics has emerged as a promising technique for biomedical applications. However, conventional dual-mode imaging is based on single-wavelength excitation, which often results in opposing fluorescence and photoacoustic signals due to competing photophysical processes in one agent, rendering the maximization of both signals infeasible. To meet this challenge, we herein propose a new strategy by using the dual-excitation approach, where one excitation wavelength generates a fluorescence signal and the other produces a photoacoustic signal, thus achieving simultaneous maximization of both signals in one fluorescence-photoacoustic molecule. Based on this strategy, three dye molecules were employed for comparison, and it was surprising to find that QHD dye with two types of excitation wavelengths could generate fluorescence and photoacoustic signals, respectively. Furthermore, this strategy was successfully implemented in dual-mode imaging of rheumatoid arthritis mice. Importantly, this study emphasizes a new design guideline for the maximization of fluorescence-photoacoustic signals by using dual-wavelength-independent excitation.


Subject(s)
Photoacoustic Techniques , Mice , Animals , Photoacoustic Techniques/methods , Spectrum Analysis
18.
J Mater Chem B ; 11(47): 11310-11318, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37982342

ABSTRACT

The intensive investigation of chemodynamic therapy (CDT) for tumor eradication revealed that the therapeutic effects of this ROS-mediated therapy are limited by endogenous reductants and inefficient Fenton-like reactions. In this study, we developed a new Fe/Cu-AuNP-PEG nanocomposite to enhance CDT and provide a synergistic treatment for tumors. The Fe/Cu-AuNP-PEG nanocomposite demonstrated effective ˙OH production and high photothermal conversion efficiency under 808 nm illumination, which promoted the ˙OH production, thereby enhancing the CDT efficacy and exhibiting a synergistic treatment for cancer. More importantly, the Fe/Cu-AuNP-PEG nanocomposite showed the ability to deplete GSH and catalyze glucose to generate H2O2, which facilitated the Fenton-like reaction and reduced the antioxidant properties of tumors, further improving the efficacy of CDT. Therefore, the Fe/Cu-AuNP-PEG nanocomposite, with horseradish peroxidase-like, glutathione peroxidase-like, and glucose oxidase-like activities, is a promising anti-tumor agent for integrating enhanced CDT and photothermal therapy (PTT) with the enhancement of synergistic therapeutic effects.


Subject(s)
Nanocomposites , Neoplasms , Tumor Microenvironment , Hydrogen Peroxide , Glucose Oxidase , Antioxidants , Neoplasms/drug therapy
19.
Anal Chem ; 95(44): 16279-16288, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37870556

ABSTRACT

Developing a nanotheranostic with a high sensing performance and efficient therapy was significant in cancer diagnosis and treatment. Herein, a Au nanoparticle and hairpin-loaded photosensitive metal-organic framework (PMOF@AuNP/hairpin) nanotheranostic was constructed by growing AuNPs on PMOF in situ and then attaching hairpins. On the one hand, the PMOF@AuNP/hairpin nanotheranostic could effectively transfer O2 into ROS, facilitating efficient PDT. Additionally, the nanotheranostic possessed catalase-like activity, which could effectively catalyze H2O2 to generate O2, thus achieving O2-evolving PDT and significantly enhancing the antitumor effect of PDT in vivo. On the other hand, the nanotheranostic showed a high loading efficiency of hairpins and achieved the sensitive and selective detection of miR-21 both in living cells and in vivo. Moreover, the nanotheranostic could dynamically monitor the miR-21 level. Due to the excellent imaging performance, the nanotheranostic could recognize cancer cells and might provide important information on cancer progression for PDT. The developed PMOF@AuNP/hairpin nanotheranostic provided a useful tool for tumor diagnosis and antitumor therapy.


Subject(s)
Metal Nanoparticles , MicroRNAs , Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Gold , Hydrogen Peroxide , Theranostic Nanomedicine , Photosensitizing Agents , Cell Line, Tumor
20.
Anal Chem ; 95(42): 15795-15802, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37815496

ABSTRACT

Lysosomes are one of the important organelles within cells, and their dynamic movement processes are associated with many biological events. Therefore, real-time monitoring of lysosomal dynamics processes has far-reaching implications. A lysosome-targeted fluorescent probe N(CH2)3-BD-PZ is proposed for real-time monitoring of lysosomal kinetic motility. Using this probe, the dynamic process of lysosomes under starvation induction was successfully explored through fluorescence imaging. Importantly, we observed a new pattern of lysosomal dynamic movement, in which an irregular lysosome was slowly cleaved into two different-sized touching lysosomes and then fused to form a new round lysosome. This research provides a powerful fluorescence tool to understand the dynamic motility of intracellular lysosomes under fluorescence imaging.


Subject(s)
Fluorescent Dyes , Lysosomes , Humans , HeLa Cells , Optical Imaging , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL
...