Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
ACS Omega ; 9(27): 29756-29764, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005813

ABSTRACT

Gram-negative pathogens that produce ß-lactamases pose a serious public health threat as they can render ß-lactam antibiotics inactive via hydrolysis. This action contributes to the waning effectiveness of clinical antibiotics and creates an urgent need for new antimicrobials. Antimicrobial peptides (AMPs) exhibiting multimodal functions serve as a potential source in spite of a few limitations. Thus, the conjugation of conventional antibiotics with AMPs may be an effective strategy to leverage the advantages of each component. In this study, we conjugated meropenem to the AMP Tilapia piscidin 4 (TP4) using a typical coupling reaction. The conjugate was characterized by using HPLC-MS, HR-MS, and MS-MS fragmentation analysis. It was then evaluated in terms of antibacterial potency, hemolysis, and cytotoxicity toward RAW264.7 and CCD-966SK cell lines. The conjugation of meropenem with TP4 significantly reduced the cytotoxicity compared to TP4. Conjugation of unprotected TP4 with meropenem resulted in cross-linking at the N-terminal and lysine sites. The structural activity relationship of the two isomers of the TP4-meropenem conjugate was investigated. Both the isomers showed notable antibacterial activities against NDM-1 Escherichia coli and reduced red blood cell hemolysis as compared to TP4. Lysine conjugate (TP4-K-Mero) showed lesser hemolysis than the N-terminal conjugate (TP4-N-Mero). Molecular modeling further revealed that the conjugates can bind to lipopolysaccharides and inhibit NDM-1 ß-lactamase. Together, these data show that conjugation of antibiotics with AMP can be a feasible approach to increase the therapeutic profile and effectively target multidrug-resistant pathogens. Furthermore, antibiotic conjugation at different AMP sites tends to show unique biological properties.

2.
Food Chem ; 455: 139874, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838624

ABSTRACT

Molecules of natural origin often possess useful biological activities. For instance, the natural peptide Tilapia Piscidin 4 (TP4) exhibits potent antimicrobial activity against a broad spectrum of pathogens. In this study, we explored the potential application of TP4 as a food preservative, asking whether it can prevent spoilage due to microbial contamination. A preliminary in silico analysis indicated that TP4 should interact strongly with fungal cell membrane components. Hence, we tested the activity of TP4 toward Candida albicans within fruit juice and found that the addition of TP4 could abolish fungal growth. We further determined that the peptide acts via a membranolytic mechanism and displays concentration-dependent killing efficiency. In addition, we showed that TP4 inhibited growth of Rhizopus oryzae in whole fruit (tomato) samples. Based on these findings, we conclude that TP4 should be further evaluated as a potentially safe and green solution to prevent food spoilage.


Subject(s)
Candida albicans , Food Preservatives , Rhizopus , Animals , Candida albicans/drug effects , Rhizopus/drug effects , Rhizopus/growth & development , Food Preservatives/pharmacology , Food Preservatives/chemistry , Tilapia/microbiology , Tilapia/growth & development , Fish Proteins/pharmacology , Fish Proteins/chemistry , Food Preservation/methods , Food Contamination/prevention & control , Food Contamination/analysis , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
3.
Cell Biochem Biophys ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856832

ABSTRACT

Lipid emulsions are the primary source of calories and fatty acids that are used to provide essential energy and nutrients to patients suffering from severe intestinal failure and critical illness. However, their use has been linked to adverse effects on patient outcomes, notably affecting immune defenses and inflammatory responses. ClinOleic is a lipid emulsion containing a mixture of olive oil and soybean oil (80:20). The effect of ClinOleic on the differentiation of M1 macrophages remains unclear. In this study, we isolated human monocytes and added ClinOleic to differentiation culture media to investigate whether it affects monocyte polarization into M1 macrophages and macrophage functions, such as reactive oxygen species (ROS) production and phagocytosis. ROS production was stimulated by live S. aureus and detected with L-012, a chemiluminescence emission agent. Phagocytic capacity was assayed using pHrodo™ Green S. aureus Bioparticles® Conjugate. We found that M1 cell morphology, surface markers (CD80 and CD86), and M1-associated cytokines (TNF-α and IL-6) did not significantly change upon incubation with ClinOleic during M1 polarization. However, S. aureus-triggered ROS production was significantly lower in M1 macrophages differentiated with ClinOleic than in those not treated with ClinOleic. The inhibitory effect of ClinOleic on macrophage function also appeared in the phagocytosis assay. Taken together, these findings reveal that ClinOleic has a limited impact on the M1 differentiation phenotype but obviously reduces ROS production and phagocytosis.

4.
J Med Virol ; 96(1): e29392, 2024 01.
Article in English | MEDLINE | ID: mdl-38235910

ABSTRACT

Obstructive sleep apnea is a well-known risk factor regarding the severity of COVID-19 infection. However, to date, relatively little research performed on the prevalence of obstructive sleep apnea in COVID-19 survivors. The purpose of this study was to investigate the risk of obstructive sleep apnea after COVID-19 infection. This study was based on data collected from the US Collaborative Network in TriNetX. From January 1, 2020 to June 30, 2022, participants who underwent the SARS-CoV-2 test were included in the study. Based on their positive or negative results of the COVID-19 test results (the polymerase chain reaction [PCR] test), we divided the study population into two groups. The duration of follow-up began when the PCR test was administered and continued for 12 months. Hazard ratios (HRs) and 95% confidence intervals (CIs) for newly recorded COVID-19 positive subjects for obstructive sleep apnea were calculated using the Cox proportional hazards model and compared to those without COVID-19 infection. Subgroup analyses were performed for the age, sex, and race, groups. The COVID-19 group was associated with an increased risk of obstructive sleep apnea, at both 3 months of follow-up (HR: 1.51, 95% CI: 1.48-1.54), and 1 year of follow-up (HR: 1.57, 95% CI: 1.55-1.60). Kaplan-Meier curves regarding the risk of obstructive sleep apnea revealed a significant difference of probability between the two cohorts in the follow-up periods of 3 months and 1 year (Log-Rank test, p < 0.001). The risks of obstructive sleep apnea among COVID-19 patients were significant in the less than 65 year of age group (HR: 1.50, 95% CI: 1.47-1.52), as well as in the group older than or equal to 65 years (HR:1.69, 95% CI: 1.64-1.73). Furthermore, the risks of obstructive sleep apnea were evident in both the male and female COVID-19 groups. Compared to the control group, the risks of obstructive sleep apnea in the COVID-19 participants increased in the subgroups of White (HR: 1.62, 95% CI: 1.59-1.64), Blacks/African Americans (HR: 1.50, 95% CI: 1.45-1.55), Asian (HR: 1.46, 95% CI: 1.32-1.62) and American Indian/Alaska Native (HR: 1.36, 95% CI: 1.07-1.74). In conclusion, the incidence of new diagnosis obstructive sleep apnea could be substantially higher after COVID-19 infection than non-COVID-19 comparison group. Physicians should evaluate obstructive sleep apnea in patients after COVID-19 infection to help prevent future long-term adverse effects from occurring in the future, including cardiovascular and neurovascular disease.


Subject(s)
COVID-19 , Sleep Apnea, Obstructive , Humans , Male , Female , Prevalence , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/diagnosis , Proportional Hazards Models
5.
Clin Transl Med ; 13(10): e1448, 2023 10.
Article in English | MEDLINE | ID: mdl-37830387

ABSTRACT

BACKGROUND: The tumour microenvironment (TME) is a specialised niche involving intercellular communication among cancer cells and various host cells. Among the host cells, the quantity and quality of immune cells within the TME play essential roles in cancer development and management. The immunologically suppressive, so-called 'cold' TME established by a series of tumour-host interactions, including generating immunosuppressive cytokines and recruiting regulatory host immune cells, is associated with resistance to therapies and worse clinical outcomes. MAIN BODY: Various therapeutic approaches have been used to target the cold TME, including immune checkpoint blockade therapy and adoptive T-cell transfer. A promising, less explored therapeutic strategy involves targeting TME-associated exosomes. Exosomes are nanometer-sized, extracellular vesicles that transfer material from donor to recipient cells. These particles can reprogram the recipient cells and modulate the TME. In particular, exosomes from haematopoietic cells are known to promote or suppress cancer progression under specific conditions. Understanding the effects of haematopoietic cell-secreted exosomes may foster the development of therapeutic exosomes (tExos) for personalised cancer treatment. However, the development of exosome-based therapies has unique challenges, including scalable production, purification, storage and delivery of exosomes and controlling batch variations. Clinical trials are being conducted to verify the safety, feasibility, availability and efficacy of tExos. CONCLUSION: This review summarises our understanding of how haematopoietic cell-secreted exosomes regulate the TME and antitumour immunity and highlights present challenges and solutions for haematopoietic cell-derived exosome-based therapies.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/pathology , Neoplasms/drug therapy , Extracellular Vesicles/pathology , Tumor Microenvironment
6.
Biofilm ; 6: 100149, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37635811

ABSTRACT

Antibiotic therapy is the primary treatment for bovine mastitis, but the drawbacks of this strategy include poor cure rate and economic losses from the need to discard milk with antibiotic residues. Unfortunately, few other treatment options are currently available for mastitis. Failure of antibiotic treatments is often attributed to formation of bacterial biofilms and abscesses in the mammary gland tissue, which lead to chronic infections that are difficult to eradicate and drive recurrent disease. A major mastitis-causing pathogen (MCP) associated with biofilms in bovine mastitis is Staphylococcus aureus. In this study, we demonstrate that octanoic acid has broad-spectrum microbicidal activity against MCPs and effectively inhibits S. aureus biofilm formation in milk (>50% inhibition at 3.13 mM). Octanoic acid effectively clears biofilms (95% eradication at 1X minimum bactericidal concentration, MBC) and infrequently induces S. aureus small colony variants (SCVs) that may cause recurrent mastitis. Additionally, octanoic acid rapidly kills persistent biofilm cells and cells with antibiotic tolerance (within 4 h). In contrast, antibiotics treated at >100X MBC cannot eradicate biofilms but do induce SCVs and antibiotic-tolerant cells. These effects may accelerate the transition from biofilm to chronic infection. Thus, octanoic acid exhibits bactericidal action against S. aureus biofilms, and it is less likely than antibiotic therapy to induce persistent cells and pathogen tolerance. Moreover, octanoic acid acts additively with antibiotics against S. aureus, and it attenuates tetracycline-induced virulence factor gene expression in S. aureus cells. According to these data, octanoic acid may prevent the pathological progression of bovine mastitis and offer a new strategy for treating the condition.

8.
Foods ; 12(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37107378

ABSTRACT

Black garlic has many beneficial effects, and it has a less spicy flavor. However, its aging conditions and related products still need to be further investigated. The present study aims to analyze the beneficial effects under different processing conditions and utilize high-pressure processing (HPP) in the production of black garlic jam. The highest antioxidant activities, including the DPPH scavenging, total antioxidant capacity, and reducing power (86.23%, 88.44%, and A700 = 2.48, respectively), were observed in black garlic that had been aged for 30 days. Similarly, the highest total phenols and flavonoids were observed in black garlic that had been aged for 30 days (76.86 GAE/g dw and 13.28 mg RE/g dw, respectively). The reducing sugar in black garlic was significantly increased to about 380 (mg GE/g dw) after 20 days of aging. The free amino acids in black garlic were decreased time-dependently to about 0.2 mg leucine/g dw after 30 days of aging. For the browning indexes of black garlic, the uncolored intermediate and browning products were increased in a time-dependent manner and reached a plateau at day 30. Another intermediate product in the Maillard reaction, 5-hydroxymethylfurfural (5-HMF), was observed in concentrations that increased to 1.81 and 3.04 (mg/g dw) at day 30 and 40, respectively. Furthermore, the black garlic jam made by HPP was analyzed for its texture and sensory acceptance, showing that a 1:1.5:2 ratio of black garlic/water/sugar was the most preferred and was classified as "still acceptable". Our study suggests suitable processing conditions for black garlic and outlines the prominent beneficial effects after 30 days of aging. These results could be further applied in HPP jam production and increase the diversity of black garlic products.

9.
Microbiol Spectr ; : e0385322, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877022

ABSTRACT

In this work, we sought to develop a TP4-based stapled peptide that can be used to counter polymicrobial sepsis. First, we segregated the TP4 sequence into hydrophobic and cationic/hydrophilic zones and substituted the preferred residue, lysine, as the sole cationic amino acid. These modifications minimized the intensity of cationic or hydrophobic characteristics within small segments. Then, we incorporated single or multiple staples into the peptide chain, bracketing the cationic/hydrophilic segments to improve pharmacological suitability. Using this approach, we were able to develop an AMP with low toxicity and notable in vivo efficacy. IMPORTANCE In our in vitro studies, one dual stapled peptide out of the series of candidates (TP4-3: FIIXKKSXGLFKKKAGAXKKKXIKK) showed significant activity, low toxicity, and high stability (in 50% human serum). When tested in cecal ligation and puncture (CLP) mouse models of polymicrobial sepsis, TP4-3 improved survival (87.5% on day 7). Furthermore, TP4-3 enhanced the activity of meropenem against polymicrobial sepsis (100% survival on day 7) compared to meropenem alone (37.5% survival on day 7). Molecules such as TP4-3 may be well suited for a wide variety of clinical applications.

10.
Eur J Med Chem ; 249: 115131, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36669399

ABSTRACT

Antimicrobial peptides (AMPs) show great promise for clinical applications, but the utility of naturally occurring AMPs is often limited by their stability. Here, we used a rational design approach to improve the characteristics of a pair of inactive peptides, tilapia piscidin 1 and 2 (TP1 and TP2). From each starting peptide, we generated a series of novel derivatives by substituting residues to adjust cationic charge density, percent hydrophobicity and hydrophilicity/hydrophobicity coefficients. This approach yielded a novel peptide, TP2-5 (KKCIAKAILKKAKKLLKKLVNP), that exhibits significant bactericidal potency, low cytotoxicity and high stability. The designed peptide further showed antibiofilm activity, rapid antibacterial action and a low capacity to induce bacterial resistance. Importantly, we also demonstrated that TP2-5 can protect mice in a Vibrio vulnificus-infected wound model. Therefore, our peptide modification strategy successfully generated a novel AMP with high potential for future clinical application.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
11.
Cell Oncol (Dordr) ; 45(6): 1043-1052, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36048363

ABSTRACT

Extracellular vesicles (EVs) are cell-released, membranous structures essential for intercellular communication. The biochemical compositions and physiological impacts of exosomes, lipid-bound, endosomal origin EVs, have been focused on, especially on the tumor-host interactions in a defined tumor microenvironment (TME). Despite recent progress in targeted therapy and cancer immunotherapy in colorectal cancer (CRC), cancer patients still suffer from distal metastasis and tumor relapse, suggesting unmet needs for biomarkers directing therapeutic interventions and predicting treatment responsiveness. As exosomes are indispensable for intercellular communication and high exosome abundance makes them feasible biomarker molecules, this review discusses exosome heterogeneity and how exosomes orchestrate the interplay among tumor cells, cancer stem cells (CSCs) and host cells, including stromal cells, endothelial cells and immunocytes, in the CRC TME. This review also discusses mechanisms for loading exosomal contents and potential exosomal DNA, RNA and protein biomarkers for early CRC detection. Finally, we summarize the diagnostic and therapeutic exosomes in clinical trials. We envision that detecting and targeting cancer-specific exosomes could provide therapeutic advances in developing personalized cancer medicine.


Subject(s)
Colorectal Neoplasms , Exosomes , Extracellular Vesicles , Humans , Exosomes/metabolism , Endothelial Cells , Tumor Microenvironment , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy , Colorectal Neoplasms/metabolism
12.
J Chin Med Assoc ; 85(10): 1000-1005, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36000957

ABSTRACT

BACKGROUND: Electromyographic (EMG) endotracheal tubes with surface electrodes are used during neck surgery to prevent recurrent laryngeal nerve (RLN) injury. Proper positioning of the EMG tube is of paramount importance. In this study, we aimed to compare the use of video laryngoscopy with other methods for achieving the optimal depth of the EMG tube. METHODS: We retrospectively enrolled 489 adult patients (with 675 nerves at risk [NAR]) undergoing surgery using the EMG endotracheal tube. Patients were categorized into three groups with: rigid laryngoscope (n = 140, NAR = 187), conventional laryngoscope (n = 262, NAR = 370), and video laryngoscope (n = 87, NAR = 118). A formula for predicting optimal depths of the EMG tube was obtained from data of the standard group with rigid laryngoscope. Depths of the EMG endotracheal tube were measured and postoperative RLN injuries were analyzed. RESULTS: Based on linear regression, the formula was derived for predicting the optimal depth of EMG endotracheal tube (cm) = 11.028 + 0.635 * gender (female = 0; male = 1) + 0.069 * height (cm). Compared to conventional laryngoscope, intubation of EMG tube with video laryngoscope resulted in less discrepancy between its actual value and optimal value, and the tube depth was more correct (OR = 2.888, 95% CI = 1.753-4.757, p < 0.001). All five postoperative permanent RLN injuries were found in the group with conventional laryngoscope. CONCLUSION: EMG endotracheal tube insertion with video laryngoscopy is superior to conventional laryngoscopy, as well as an alternative to rigid laryngoscopy. The video laryngoscopy is a novel approach to get optimal depth of EMG endotracheal tube during neck surgery.


Subject(s)
Laryngoscopes , Adult , Electrodes , Female , Humans , Intubation, Intratracheal/methods , Laryngoscopy , Male , Retrospective Studies
13.
Mol Biol Rep ; 49(7): 6517-6529, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35637315

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) consist of chromatin DNA networks that are studded with cytosolic and granular antimicrobial proteins to trap or kill an infected microorganism. A lipid emulsion, the solvent of pure propofol for intravenous application, is given to clinical patients who require intravenous feeding of fatty acids and fat for energy. Intravenous propofol is widely used to sedate critically ill patients. Both intravenous propofol and its lipid emulsion have immunomodulatory activity. However, the role of lipid emulsion of intravenous propofol on NET induction remains unclear. METHODS: In this study, neutrophils were stimulated with phorbol myristate acetate (PMA) or Escherichia coli (E. coli) in the absence or presence of intravenous propofol (Propofol-Lipuro®), its solvent lipid emulsion (Lipofundin) or pure propofol, and NETs were stained with SYTOX Green for visualization and quantification. Total HOCl was determined by measuring the taurine-chloramine complex, and intracellular HOCl was evaluated with BioTracker™ TP-HOCl 1 dye. RESULTS: PMA-induced NETs were not efficiently inhibited when Propofol-Lipuro® was added after PMA stimulation. Clinically relevant concentrations of Lipofundin exerted a significant reduction in PMA-induced NETs and total reactive oxidative species (ROS), which was comparable to that observed for Propofol-Lipuro®. Lipofundin transiently reduced intracellular HOCl production and the phosphorylation level of extracellular regulated kinase (p-ERK) but did not scavenge HOCl. Moreover, Lipofundin decreased E. coli-induced NETs in a ROS-independent pathway, similar to Propofol-Lipuro®. CONCLUSIONS: All data agree that Lipofundin, the major component of Propofol-Lipuro®, inhibits intracellular HOCl and p-ERK to suppress PMA-induced NET formation but reduces E.coli-induced NETs in a ROS-independent pathway.


Subject(s)
Escherichia coli , Extracellular Traps , Neutrophils , Phospholipids , Propofol , Sorbitol , Tetradecanoylphorbol Acetate , Administration, Intravenous , Drug Combinations , Emulsions/administration & dosage , Escherichia coli/immunology , Extracellular Signal-Regulated MAP Kinases , Extracellular Traps/immunology , Humans , Hypochlorous Acid , Neutrophils/immunology , Phospholipids/pharmacology , Propofol/administration & dosage , Propofol/antagonists & inhibitors , Propofol/pharmacology , Reactive Oxygen Species/metabolism , Solvents , Sorbitol/pharmacology , Tetradecanoylphorbol Acetate/pharmacology
14.
Front Microbiol ; 13: 806654, 2022.
Article in English | MEDLINE | ID: mdl-35444633

ABSTRACT

Bacterial vaginosis (BV) is prevalent among women of reproductive age and has a high rate of recurrence, which can be largely attributed to ineffective BV biofilm eradication by current first-line antibiotics. In this study, we report that the Nile tilapia piscidin 4 (TP4) exhibits broad-spectrum antimicrobial and antibiofilm activity against BV-associated bacteria, but not beneficial lactobacilli. In addition, BV-associated Gardnerella vaginalis remains susceptible to TP4 even after continual exposure to the peptide for up to 22 passages. Gardnerella vaginalis and Streptococcus anginosus are both biofilm-forming BV-associated bacteria, and we found that combining TP4 peptide and disodium EDTA with the biofilm-disrupting agent, chitosan, can eradicate biofilms formed by single or mixed G. vaginalis and S. anginosus. In addition, long-term storage of TP4 peptide in chitosan did not diminish its bactericidal activity toward G. vaginalis. Preformulation studies were performed using High performance liquid chromatography (HPLC) and Circular Dichroism (CD). The long-term stability of TP4 peptide was assessed under various conditions, such as different temperatures and ionic strengths, and in the presence of H2O2 and lactic acid. When exposed to sodium dodecyl sulfate (SDS), TP4 maintained its secondary structure at various temperatures, salt and disodium EDTA concentrations. Furthermore, the TP4 microbicide formulation significantly reduced the colonization density of BV-associated bacteria in mice infected with single or mixed bacteria (G. vaginalis and S. anginosus). The TP4 microbicide formulation showed biocompatibility with beneficial human vaginal lactobacilli and female reproductive tissues in C57BL/6 mice. These results suggest that the TP4 microbicide formulation could be a promising topical microbicide agent for BV treatment.

15.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216307

ABSTRACT

Pathogenic superbugs are the root cause of untreatable complex infections with limited or no treatment options. These infections are becoming more common as clinical antibiotics have lost their effectiveness over time. Therefore, the development of novel antibacterial agents is urgently needed to counter these microbes. Antimicrobial peptides (AMPs) are a viable treatment option due to their bactericidal potency against multiple microbial classes. AMPs are naturally selected physiological microbicidal agents that are found in all forms of organisms. In the present study, we developed two tilapia piscidin 2 (TP2)-based AMPs for antimicrobial application. Unlike the parent peptide, the redesigned peptides showed significant antimicrobial activity against multidrug-resistant bacterial species. These peptides also showed minimal cytotoxicity. In addition, they were significantly active in the presence of physiological salts, 50% human serum and elevated temperature. The designed peptides also showed synergistic activity when combined with clinical antibiotics. The current approach demonstrates a fruitful strategy for developing potential AMPs for antimicrobial application. Such AMPs have potential for progression to further trials and drug development investigations.


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests
16.
Microorganisms ; 9(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34946079

ABSTRACT

Soybean oil (SO)-, SO medium-chain triglyceride (MCT)-, olive oil (OO)-, and fish oil (FO)-based lipid emulsions are generally applied in clinical practice via intravenous injection for patients with nutritional requirements. The function of lipid emulsions on immune modulation remains inconsistent, and their effects on macrophages are limited. In the present study, we used a model of S. aureus-infected mouse RAW264.7 macrophages to determine the influence of three different compositions of lipid emulsions (Lipofundin, ClinOleic, and Omegaven) on reactive oxygen species (ROS) production, phagocytosis, and bacterial survival. The three individual lipid emulsions similarly enhanced bacterial survival but reduced S. aureus-stimulated ROS, phagocytosis of S. aureus bioparticles conjugate, polymerization of F-actin, and phosphorylation of AKT, JNK, and ERK. Compared with the JNK and ERK inhibitors, the PI3K inhibitor markedly suppressed the phagocytosis of S. aureus bioparticles conjugate and the polymerization of F-actin, whereas it significantly increased the bacterial survival. These results suggest that the three lipid emulsions diminished ROS production and phagocytosis, resulting in increased bacterial survival. PI3K predominantly mediated the inhibitory effects of the lipid emulsions on the phagocytosis of mouse RAW264.7 macrophages.

17.
Int J Gen Med ; 14: 8383-8388, 2021.
Article in English | MEDLINE | ID: mdl-34819746

ABSTRACT

OBJECTIVE: The present study evaluates the psychosocial care and the bronchoalveolar lavage (BAL)/fiberoptic bronchoscopy (FB) procedure in children with pediatric acute exogenous lipoid pneumonia (ELP) and summarizes the critical points of nursing. METHODS: Data on the psychosocial factors of the patients and clinical information were collected. Participants comprised 41 children within three years of age. RESULTS: All the children were cooperative with the BAL/FB procedure. The children's pain scores were between 4-6, and the psychological conditions of the children and caregivers were nervous/anxious upon admission. After the medical staff's psychological care and health education, the children's postoperative pain scores were reduced to 0-3, and the psychological state of the caregivers was positive. CONCLUSION: Psychological care can alleviate families' adverse emotions and promote treatment cooperation and recovery from the acute ELP.

18.
Int J Mol Sci ; 21(15)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731544

ABSTRACT

Autophagy is a potential target for the treatment of triple negative breast cancer (TNBC). Because of a lack of targeted therapies for TNBC, it is vital to find optimal agents that avoid chemoresistance and metastasis. Flavopereirine has anti-proliferation ability in cancer cells, but whether it regulates autophagy in breast cancer cells remains unclear. A Premo™ Tandem Autophagy Sensor Kit was used to image the stage at which flavopereirine affects autophagy by confocal microscopy. A plasmid that constitutively expresses p-AKT and siRNA targeting p38 mitogen-activated protein kinase (MAPK) was used to confirm the related signaling pathways by Western blot. We found that flavopereirine induced microtubule-associated protein 1 light chain 3 (LC3)-II accumulation in a dose- and time-dependent manner in MDA-MB-231 cells. Confocal florescent images showed that flavopereirine blocked autophagosome fusion with lysosomes. Western blotting showed that flavopereirine directly suppressed p-AKT levels and mammalian target of rapamycin (mTOR) translation. Recovery of AKT phosphorylation decreased the level of p-p38 MAPK and LC3-II, but not mTOR. Moreover, flavopereirine-induced LC3-II accumulation was partially reduced in MDA-MB-231 cells that were transfected with p38 MAPK siRNA. Overall, flavopereirine blocked autophagy via LC3-II accumulation in autophagosomes, which was mediated by the AKT/p38 MAPK signaling pathway.


Subject(s)
Autophagy/drug effects , Breast Neoplasms/metabolism , Carbolines/pharmacology , MAP Kinase Signaling System/drug effects , Proto-Oncogene Proteins c-akt/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Breast Neoplasms/drug therapy , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans
19.
PLoS One ; 15(7): e0236601, 2020.
Article in English | MEDLINE | ID: mdl-32730353

ABSTRACT

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.


Subject(s)
Disease Resistance , Fatty Acid Desaturases/metabolism , Fish Proteins/metabolism , Gastrointestinal Microbiome , Linoleoyl-CoA Desaturase/metabolism , Tilapia/microbiology , Vibrio vulnificus/pathogenicity , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/microbiology , Delta-5 Fatty Acid Desaturase , Diet/veterinary , Discriminant Analysis , Disease Resistance/genetics , Docosahexaenoic Acids/metabolism , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/metabolism , Fish Diseases/microbiology , Fish Diseases/pathology , Fish Proteins/genetics , Gene Expression , Least-Squares Analysis , Linoleoyl-CoA Desaturase/genetics , Tilapia/genetics , Vibrio Infections/pathology , Vibrio Infections/veterinary
20.
Lipids ; 55(1): 45-52, 2020 01.
Article in English | MEDLINE | ID: mdl-31838756

ABSTRACT

Lipofundin is the solvent for propofol in the intravenous injection of Propofol-Lipuro® and is used in patients who need intravenous feeding to provide fatty acids and fat for energy. In addition to propofol, Lipofundin also affects the immune modulation of phagocytes. In a previous study, we reported that intravenous propofol effectively decreased Staphylococcus aureus-stimulated reactive oxygen species (ROS) levels, IL-1ß secretion, and phagocytosis in RAW264.7 macrophages. It is important to separately assess the effects of pure propofol, Lipofundin, and Propofol-Lipuro. By using an S. aureus-infected RAW264.7 macrophage model, the levels of secreted IL-1ß in cell supernatants were determined by ELISA. IL-1ß mRNA in cell pellets was further analyzed by quantitative polymerase chain reaction (qPCR), and Western blotting was performed to detect pro-IL-1ß synthesis. Total ROS levels were determined by a luminol chemiluminescence assay. Compared with pure propofol, treatment with clinically relevant concentrations of Propofol-Lipuro and Lipofundin obviously reduced IL-1ß secretion (>85% inhibition), S. aureus-stimulated ROS production (50% inhibition), and phagocytosis (>60% inhibition) to similar levels. Treatment with pure propofol alone significantly decreased IL-1ß mRNA levels and pro-IL-1ß protein synthesis, and slightly inhibited phagocytosis. In contrast, treatment with Propofol-Lipuro did not influence IL-1ß mRNA or pro-IL-1ß protein expression, even though treatment with Lipofundin increased the levels of both IL-1ß mRNA and its precursor protein. In conclusion, IL-1ß secretion is regulated at the posttranslational level. Lipofundin mediated the major effect of Propofol-Lipuro on the inhibition of IL-1ß secretion, ROS production, and phagocytosis in S. aureus-infected RAW264.7 cells.


Subject(s)
Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Macrophages/microbiology , Phospholipids/pharmacology , Propofol/pharmacology , Sorbitol/pharmacology , Staphylococcus aureus/immunology , Administration, Intravenous , Animals , Down-Regulation , Drug Combinations , Gene Expression Regulation/drug effects , Macrophages/cytology , Macrophages/immunology , Mice , Phagocytosis/drug effects , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...