Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Neurology ; 102(11): e209437, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38759141

ABSTRACT

OBJECTIVES: To validate a recently published study in which skin biopsy was reported as a valuable alternative to brain biopsy in diagnosing CSF1R-related disorder (CSF1R-RD). METHODS: Blinded evaluation of skin samples was performed by independent reviewers using light and electron microscopy collected from a group of CSF1R variant carriers (n = 10) with various genotypes (mono and biallelic), different stages of the disease (asymptomatic and symptomatic), and exposed to different therapies (glucocorticoids, hematopoietic stem cell transplantation, and TREM2 agonist), and from a group of healthy controls (n = 5). RESULTS: Biopsies from patients with CSF1R-RD at various disease stages were indistinguishable from controls determined using light microscopy and electron microscopy. DISCUSSION: We found no distinctive axonal pathology in skin biopsies collected from CSF1R variant carriers at all stages of the disease. Our results are consistent with clinical and neurophysiologic features of the CSF1R-RD, in that peripheral nervous system involvement has not been reported. Studies aiming to discover new biomarkers are important, but the results must be validated with larger numbers of patients and healthy controls. Based on blinded light and electron microscopic studies of skin biopsies, there is no evidence that CSF1R-RD is associated with distinctive changes in cutaneous peripheral nerves. This suggests that skin biopsy is not useful in diagnosis of CSF1R-RD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that skin biopsy does not distinguish those with CSF1R-RD, or carriers, from normal controls.


Subject(s)
Biomarkers , Skin , Humans , Skin/pathology , Biopsy , Female , Male , Adult , Biomarkers/cerebrospinal fluid , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Middle Aged , Young Adult , Adolescent , Child , Receptor, Macrophage Colony-Stimulating Factor
2.
Alzheimers Dement ; 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090691

ABSTRACT

INTRODUCTION: The cytoprotective PTEN-induced kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (PRKN) pathway selectively labels damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) for their autophagic removal (mitophagy). Because dysfunctions of mitochondria and degradation pathways are early features of Alzheimer's disease (AD), mitophagy impairments may contribute to the pathogenesis. METHODS: Morphology, levels, and distribution of the mitophagy tag pS65-Ub were evaluated by biochemical analyses combined with tissue and single cell imaging in AD autopsy brain and in transgenic mouse models. RESULTS: Analyses revealed significant increases of pS65-Ub levels in AD brain, which strongly correlated with granulovacuolar degeneration (GVD) and early phospho-tau deposits, but were independent of amyloid beta pathology. Single cell analyses revealed predominant co-localization of pS65-Ub with mitochondria, GVD bodies, and/or lysosomes depending on the brain region analyzed. DISCUSSION: Our study highlights mitophagy alterations in AD that are associated with early tau pathology, and suggests that distinct mitochondrial, autophagic, and/or lysosomal failure may contribute to the selective vulnerability in disease.

3.
Brain ; 143(6): 1905-1919, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32504082

ABSTRACT

Genetic variants that define two distinct haplotypes at the TMEM106B locus have been implicated in multiple neurodegenerative diseases and in healthy brain ageing. In frontotemporal dementia (FTD), the high expressing TMEM106B risk haplotype was shown to increase susceptibility for FTD with TDP-43 inclusions (FTD-TDP) and to modify disease penetrance in progranulin mutation carriers (FTD-GRN). To elucidate the biological function of TMEM106B and determine whether lowering TMEM106B may be a viable therapeutic strategy, we performed brain transcriptomic analyses in 8-month-old animals from our recently developed Tmem106b-/- mouse model. We included 10 Tmem106b+/+ (wild-type), 10 Tmem106b+/- and 10 Tmem106-/- mice. The most differentially expressed genes (153 downregulated and 60 upregulated) were identified between Tmem106b-/- and wild-type animals, with an enrichment for genes implicated in myelination-related cellular processes including axon ensheathment and oligodendrocyte differentiation. Co-expression analysis also revealed that the most downregulated group of correlated genes was enriched for myelination-related processes. We further detected a significant loss of OLIG2-positive cells in the corpus callosum of Tmem106b-/- mice, which was present already in young animals (21 days) and persisted until old age (23 months), without worsening. Quantitative polymerase chain reaction revealed a reduction of differentiated but not undifferentiated oligodendrocytes cellular markers. While no obvious changes in myelin were observed at the ultrastructure levels in unchallenged animals, treatment with cuprizone revealed that Tmem106b-/- mice are more susceptible to cuprizone-induced demyelination and have a reduced capacity to remyelinate, a finding which we were able to replicate in a newly generated Tmem106b CRISPR/cas9 knock-out mouse model. Finally, using a TMEM106B HeLa knock-out cell line and primary cultured oligodendrocytes, we determined that loss of TMEM106B leads to abnormalities in the distribution of lysosomes and PLP1. Together these findings reveal an important function for TMEM106B in myelination with possible consequences for therapeutic strategies aimed at lowering TMEM106B levels.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , Female , Gene Expression/genetics , Haplotypes , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Nerve Fibers, Myelinated/pathology , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics
4.
Article in English | MEDLINE | ID: mdl-34386806

ABSTRACT

BACKGROUND: The majority of cases of frontotemporal lobar degeneration (FTLD) are characterized by focal cortical atrophy with an underlying tau or TDP-43 proteinopathy. A subset of FTLD cases, however, lack tau and TDP-43 immuno-reactivity, but have neuronal inclusions positive for ubiquitin, referred to as atypical FTLD (aFTLD-U). Studies have demonstrated that ubiquitin-positive inclusions in aFTLD-U are immuno-reactive for fused in sarcoma (FUS). As such, the current nosology for this entity is FTLD-FUS, which is thought to include not only aFTLD-U, but also neuronal intermediate filament inclusion disease (NIFID) and basophilic inclusion body disease. OBJECTIVE: To compare pathological features of cases of aFTLD-U and NIFID. METHODS: We reviewed the neuropathology of 15 patients (10 males and 5 females; average age at death 54 years (range 41-69 years)) with an antemortem clinical diagnosis of a frontotemporal dementia and pathological diagnosis of aFTLD-U (n=8) or NIFID (n=7). Sections were processed for immunohistochemistry and immunoelectron microscopy with FUS, TDP-43, and α-internexin (αINX) antibodies. RESULTS: Eight cases had pathologic features consistent with FTLD-FUS, with severe striatal atrophy (7/8 cases), as well as FUS-positive neuronal cytoplasmic and vermiform intranuclear inclusions, but no αINX immuno-reactivity. Five cases had features consistent with NIFID, with neuronal inclusions positive for both FUS and αINX. Striatal atrophy was present in only 2 of the NIFID cases. Two cases had αINX-positive neuronal inclusions consistent with NIFID, but both lacked striatal atrophy and FUS immunoreactivity. Surprisingly, one of these two NIFID cases had lesions immunoreactive for TDP-43. DISCUSSION: While FUS pathology remains a prominent feature of aFTLD-U, there is pathologic heterogeneity, including rare cases of NIFID with TDP-43- rather than FUS-positive inclusions.

5.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31261380

ABSTRACT

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Subject(s)
Central Nervous System/metabolism , Mutation , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/psychology , Humans , Male , Mice , Mice, Transgenic , Phosphorylation , Pick Disease of the Brain/genetics , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/psychology , Tauopathies/metabolism , Tauopathies/psychology
6.
J Neuropathol Exp Neurol ; 78(5): 460-466, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30990878

ABSTRACT

Pathogenic hemizygous variants in the SH2D1A gene cause X-linked lymphoproliferative (XLP) syndrome, a rare primary immunodeficiency usually associated with fatal Epstein-Barr virus infection. Disease onset is typically in early childhood, and the average life expectancy of affected males is ∼11 years. We describe clinical, radiographic, neuropathologic, and genetic features of a 49-year-old man presenting with central nervous system vasculitis that was reminiscent of adult primary angiitis but which was unresponsive to treatment. The patient had 2 brothers; 1 died of aplastic anemia at age 13 and another died of diffuse large B-cell lymphoma in his sixties. Exome sequencing of the patient and his older brother identified a novel hemizygous variant in SH2D1A (c.35G>T, p.Ser12Ile), which encodes the signaling lymphocyte activation molecule (SLAM)-associated protein (SAP). Molecular modeling and functional analysis showed that this variant had decreased protein stability, similar to other pathogenic missense variants in SH2D1A. The family described in this report highlights the broadly heterogeneous clinical presentations of XLP and the accompanying diagnostic challenges in individuals presenting in adulthood. In addition, this report raises the possibility of a biphasic distribution of XLP cases, some of which may be mistaken for age-related malignancies and autoimmune conditions.


Subject(s)
Dementia, Multi-Infarct/diagnostic imaging , Dementia, Multi-Infarct/genetics , Lymphoproliferative Disorders/diagnostic imaging , Lymphoproliferative Disorders/genetics , Signaling Lymphocytic Activation Molecule Associated Protein/genetics , Amino Acid Sequence , Diagnosis, Differential , Humans , Male , Middle Aged , Pedigree , Protein Structure, Secondary , Signaling Lymphocytic Activation Molecule Associated Protein/chemistry
7.
J Exp Med ; 216(3): 539-555, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30770411

ABSTRACT

It has been challenging to produce ex vivo models of the inclusion pathologies that are hallmark pathologies of many neurodegenerative diseases. Using three-dimensional mouse brain slice cultures (BSCs), we have developed a paradigm that rapidly and robustly recapitulates mature neurofibrillary inclusion and Lewy body formation found in Alzheimer's and Parkinson's disease, respectively. This was achieved by transducing the BSCs with recombinant adeno-associated viruses (rAAVs) that express α-synuclein or variants of tau. Notably, the tauopathy BSC model enables screening of small molecule therapeutics and tracking of neurodegeneration. More generally, the rAAV BSC "toolkit" enables efficient transduction and transgene expression from neurons, microglia, astrocytes, and oligodendrocytes, alone or in combination, with transgene expression lasting for many months. These rAAV-based BSC models provide a cost-effective and facile alternative to in vivo studies, and in the future can become a widely adopted methodology to explore physiological and pathological mechanisms related to brain function and dysfunction.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Dependovirus/genetics , Parkinson Disease/pathology , Alzheimer Disease/virology , Animals , Brain/metabolism , Brain/virology , Drug Evaluation, Preclinical/methods , Gene Expression , Humans , Mice, Inbred C3H , Mice, Transgenic , Microorganisms, Genetically-Modified , Mutation , Neurons/pathology , Organ Culture Techniques , Parkinson Disease/virology , Transduction, Genetic , Transgenes , alpha-Synuclein/genetics , tau Proteins/genetics
8.
Science ; 363(6428)2019 02 15.
Article in English | MEDLINE | ID: mdl-30765536

ABSTRACT

How hexanucleotide GGGGCC (G4C2) repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. We developed a mouse model engineered to express poly(PR), a proline-arginine (PR) dipeptide repeat protein synthesized from expanded G4C2 repeats. The expression of green fluorescent protein-conjugated (PR)50 (a 50-repeat PR protein) throughout the mouse brain yielded progressive brain atrophy, neuron loss, loss of poly(PR)-positive cells, and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused heterochromatin protein 1α (HP1α) liquid-phase disruptions, decreases in HP1α expression, abnormal histone methylation, and nuclear lamina invaginations. These aberrations of histone methylation, lamins, and HP1α, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element expression and double-stranded RNA accumulation. Thus, we uncovered mechanisms by which poly(PR) may contribute to the pathogenesis of C9orf72-associated FTD and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Dipeptides/metabolism , Heterochromatin/pathology , RNA, Double-Stranded/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , C9orf72 Protein/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Dipeptides/genetics , Disease Models, Animal , Green Fluorescent Proteins , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Nuclear Lamina/pathology , Repetitive Sequences, Nucleic Acid
9.
Cells ; 7(12)2018 Dec 16.
Article in English | MEDLINE | ID: mdl-30558352

ABSTRACT

Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells.

10.
Autophagy ; 14(8): 1404-1418, 2018.
Article in English | MEDLINE | ID: mdl-29947276

ABSTRACT

Although exact causes of Parkinson disease (PD) remain enigmatic, mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuron susceptibility in both familial and sporadic PD. Two genes associated with recessive, early-onset PD encode the ubiquitin (Ub) kinase PINK1 and the E3 Ub ligase PRKN/PARK2/Parkin, which together orchestrate a protective mitochondrial quality control (mitoQC) pathway. Upon stress, both enzymes cooperatively identify and decorate damaged mitochondria with phosphorylated poly-Ub (p-S65-Ub) chains. This specific label is subsequently recognized by autophagy receptors that further facilitate mitochondrial degradation in lysosomes (mitophagy). Here, we analyzed human post-mortem brain specimens and identified distinct pools of p-S65-Ub-positive structures that partially colocalized with markers of mitochondria, autophagy, lysosomes and/or granulovacuolar degeneration bodies. We further quantified levels and distribution of the 'mitophagy tag' in 2 large cohorts of brain samples from normal aging and Lewy body disease (LBD) cases using unbiased digital pathology. Somatic p-S65-Ub structures independently increased with age and disease in distinct brain regions and enhanced levels in LBD brain were age- and Braak tangle stage-dependent. Additionally, we observed significant correlations of p-S65-Ub with LBs and neurofibrillary tangle levels in disease. The degree of co-existing p-S65-Ub signals and pathological PD hallmarks increased in the pre-mature stage, but decreased in the late stage of LB or tangle aggregation. Altogether, our study provides further evidence for a potential pathogenic overlap among different forms of PD and suggests that p-S65-Ub can serve as a biomarker for mitochondrial damage in aging and disease. ABBREVIATIONS: BLBD: brainstem predominant Lewy body disease; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DLB: dementia with Lewy bodies; DLBD: diffuse neocortical Lewy body disease; EOPD: early-onset Parkinson disease; GVB: granulovacuolar degeneration body; LB: Lewy body; LBD: Lewy body disease; mitoQC: mitochondrial quality control; nbM: nucleus basalis of Meynert; PD: Parkinson disease; PDD: Parkinson disease with dementia; p-S65-Ub: PINK1-phosphorylated serine 65 ubiquitin; SN: substantia nigra; TLBD: transitional Lewy body disease; Ub: ubiquitin.


Subject(s)
Aging/metabolism , Biomarkers/metabolism , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Mitophagy , Ubiquitin/metabolism , Aged , Aged, 80 and over , Brain/metabolism , Brain/ultrastructure , Cohort Studies , Female , HeLa Cells , Humans , Male , Middle Aged , Mutation/genetics , Phosphorylation , Phosphoserine/metabolism , Protein Binding , alpha-Synuclein/metabolism , tau Proteins/metabolism
11.
J Neuropathol Exp Neurol ; 76(8): 676-682, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28789478

ABSTRACT

Perry syndrome is a rare atypical parkinsonism with depression, apathy, weight loss, and central hypoventilation caused by mutations in dynactin p150glued (DCTN1). A rare distal hereditary motor neuropathy, HMN7B, also has mutations in DCTN1. Perry syndrome has TAR DNA-binding protein of 43 kDa (TDP-43) inclusions as a defining feature. Other TDP-43 proteinopathies include amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with and without motor neuron disease (FTLD-MND). TDP-43 forms aggregates in neuronal cytoplasmic inclusions (NCIs), neuronal intranuclear inclusions, dystrophic neurites (DNs), as well as axonal spheroids, oligodendroglial cytoplasmic inclusions, and perivascular astrocytic inclusions (PVIs). We performed semiquantitative assessment of these lesions and presence of dynactin subunit p50 lesions in 3 cases of Perry syndrome and one of HMN7B. We compared them with 3 cases of FTLD-MND, 3 of ALS, and 3 of hippocampal sclerosis (HpScl). Perry syndrome had NCIs, DNs, and frequent PVIs and spheroids. Perry syndrome cases were similar, but different from ALS, FTLD-MND, and HpScl. TDP-43 pathology was not detected in HMN7B. Dynactin p50 inclusions were observed in both Perry syndrome and HMN7B, but not in the other conditions. These results suggest that Perry syndrome may be distinctive type of TDP-43 proteinopathy.


Subject(s)
Brain Stem/metabolism , DNA-Binding Proteins/genetics , Hypoventilation/genetics , Hypoventilation/pathology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , TDP-43 Proteinopathies/classification , TDP-43 Proteinopathies/pathology , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Brain Stem/pathology , Brain Stem/ultrastructure , DNA-Binding Proteins/metabolism , Depression/genetics , Depression/pathology , Dynactin Complex/genetics , Dynactin Complex/metabolism , Family Health , Female , Humans , Male , Microscopy, Immunoelectron , Middle Aged
12.
PLoS One ; 12(1): e0169291, 2017.
Article in English | MEDLINE | ID: mdl-28076378

ABSTRACT

One of the proteins most frequently found in neuropathological lesions is the ubiquitin binding protein p62 (sequestosome 1). Post-mortem analysis of p62 is a defining diagnostic marker in several neurodegenerative diseases including amyotrophic lateral sclerosis and inclusion body myositis. Since p62 functions in protein degradation pathways including autophagy, the build-up of p62-positive inclusions suggests defects in protein clearance. p62 was expressed unilaterally in the rat substantia nigra with an adeno-associated virus vector (AAV9) in order to study p62 neuropathology. Inclusions formed within neurons from several days to several weeks after gene transfer. By electron microscopy, the inclusions were found to contain packed 10 nm thick filaments, and mitochondria cristae structure was disrupted, resulting in the formation of empty spaces. In corollary cell culture transfections, p62 clearly impaired mitochondrial function. To probe for potential effects on macroautophagy, we co-expressed p62 with a double fluorescent tagged reporter for the autophagosome protein LC3 in the rat. p62 induced a dramatic and specific dissociation of the two tags. By 12 weeks, a rotational behavior phenotype manifested, consistent with a significant loss of dopaminergic neurons analyzed post-mortem. p62 overexpression resulted in a progressive and robust pathology model with neuronal inclusions and neurodegeneration. p62 gene transfer could be a novel methodological probe to disrupt mitochondrial function or autophagy in the brain and other tissues in vivo.


Subject(s)
Inclusion Bodies/genetics , Inclusion Bodies/pathology , Neurodegenerative Diseases/genetics , Sequestosome-1 Protein/genetics , Substantia Nigra/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Female , HEK293 Cells , Humans , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/pathology , Neurodegenerative Diseases/pathology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Sequestosome-1 Protein/physiology
13.
Brain Pathol ; 27(5): 612-626, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27529406

ABSTRACT

Mutations in microtubule-associated protein tau gene (MAPT) cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Here, we describe a patient with FTDP-17 and a novel missense mutation in exon 13 of MAPT, p.E372G. We compare clinicopathologic features of this patient to two previously unreported patients with another exon 13 mutation, p.G389R. The patient with the p.E372G mutation was a 40-year-old man with behavioral variant frontotemporal dementia (bvFTD), who subsequently developed agrammatic speech and parkinsonism. One of the FTDP-17 patients with p.G389R mutation presented at age 24 with agrammatic variant of primary progressive aphasia, and subsequently behavioral dysfunction. The other presented at age 53 with bvFTD, followed by agrammatic speech and corticobasal syndrome. Neuropathologic features of FTDP-17 due to p.E372G were similar to those of p.G389R, including tau-immunoreactive Pick body-like neuronal inclusions and swollen, tapering thread-like processes in white matter immunoreactive for 3-repeat and 4-repeat tau. Biochemical analysis of insoluble tau showed similar isoform compositions in p.E372G and p.G389R. Functional studies of the p.E372G mutation showed marked increase in tau filament formation and its reduced ability to promote microtubule assembly. Together these findings indicate that p.E372G is a pathogenic MAPT mutation that causes FTDP-17 similar to p.G389R.


Subject(s)
Cerebral Cortex/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , tau Proteins/genetics , Adult , Cerebral Cortex/ultrastructure , Female , Humans , Inclusion Bodies , Male , Middle Aged , Mutation, Missense , Young Adult
14.
Nat Neurosci ; 19(5): 668-677, 2016 05.
Article in English | MEDLINE | ID: mdl-26998601

ABSTRACT

Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neurons/pathology , Proteins/toxicity , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Atrophy/pathology , Behavior, Animal , Brain/metabolism , Brain/pathology , Brain/ultrastructure , C9orf72 Protein , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression/genetics , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/ultrastructure , Mice , Mutation , Nerve Degeneration/pathology , Neurons/metabolism , Primary Cell Culture , Proteins/genetics , Proteins/metabolism , Ubiquitinated Proteins/metabolism
15.
Neuropathology ; 36(1): 64-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26227820

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is caused by ABCD1 mutations. A cerebello-brainstem dominant form that mainly involves the cerebellum and brainstem is summarized in a review of the literature, with autopsy-confirmed cases exceedingly rare. We report a 69-year-old White man who was diagnosed with this rare disorder and describe neuropathologic, ultrastructural and genetic analyses. He did not have adrenal insufficiency or a family history of X-ALD or Addison's disease. His initial symptom was temporary loss of eyesight at age 34 years. His major symptoms were chronic and progressive gait disorder, weakness in his lower extremities and spasticity, as well as autonomic failure and cerebellar ataxia suggesting possible multiple system atrophy (MSA). He also had seizures, hearing loss and sensory disturbances. His brain MRI showed no obvious atrophy or significant white matter pathology in cerebrum, brainstem or cerebellum. He died at age 69 years with a diagnosis of MSA. Microscopic analysis showed mild, patchy myelin rarefaction with perivascular clusters of PAS-positive, CD68-positive macrophages in the white matter most prominent in the cerebellum and occipital lobe, but also affecting the optic tract and internal capsule. Electron microscopy of cerebellar white matter showed cleft-like trilamellar cytoplasmic inclusions in macrophages typical of X-ALD, which prompted genetic analysis that revealed a novel ABCD1 mutation, p.R163G. Given the relatively mild pathological findings and long disease duration, it is likely that the observed pathology was the result of a slow and indolent disease process. We described a patient who had sporadic cerebello-brainstem dominant form of X-ALD with long clinical course, mild pathological findings, and an ABCD1 p.R163G substitution. We also review a total of 34 cases of adult-onset cerebello-brainstem dominant form of X-ALD. Although rare, X-ALD should be considered in the differential diagnosis of MSA.


Subject(s)
Adrenoleukodystrophy/pathology , Brain Stem/pathology , Cerebellum/pathology , Multiple System Atrophy/pathology , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Aged , Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Brain/pathology , Disease Progression , Humans , Magnetic Resonance Imaging , Male , Mutation/genetics
16.
Neuron ; 88(4): 678-90, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26526393

ABSTRACT

The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Caenorhabditis elegans Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Hydrogels , Motor Activity/genetics , Phase Transition , RNA, Messenger/metabolism , RNA-Binding Protein FUS/genetics , Animals , Caenorhabditis elegans , Cytoplasmic Granules/metabolism , Disease Models, Animal , Longevity , Mutation , RNA-Binding Protein FUS/chemistry , Ribonucleoproteins/metabolism
17.
J Neuropathol Exp Neurol ; 74(11): 1042-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26426266

ABSTRACT

Pick disease (PiD) is a frontotemporal lobar degeneration with distinctive neuronal inclusions (Pick bodies) that are enriched in 3-repeat (3R) tau. Although mostly sporadic, mutations in the tau gene (MAPT) have been reported. We screened 24 cases of neuropathologically confirmed PiD for MAPT mutations and found a novel mutation (c.1008G>C, p.Q336H) in 1 patient. Pathogenicity was confirmed on microtubule assembly and tau filament formation assays. The patient was compared with sporadic PiD and PiD associated with MAPT mutations from a review of the literature. The patient had behavioral changes at 55 years of age, followed by reduced verbal fluency, parkinsonism, and death at 63 years of age. His mother and maternal uncle had similar symptoms. Recombinant tau with p.Q336H mutation formed filaments faster than wild-type tau, especially with 3R tau. It also promoted more microtubule assembly than wild-type tau. We conclude that mutations in MAPT, including p.Q336H, can be associated with clinical, pathologic, and biochemical features that are similar to those in sporadic PiD. The pathomechanism of p.Q336H, and another previously reported variant at the same codon (p.Q336R), seems to be unique to MAPT mutations in that they not only predispose to abnormal tau filament formation but also facilitate microtubule assembly in a 3R tau-dependent manner.


Subject(s)
Exons/genetics , Glutamic Acid/genetics , Histidine/genetics , Mutation/genetics , Pick Disease of the Brain/genetics , tau Proteins/genetics , Brain/metabolism , Brain/pathology , DNA Mutational Analysis , Humans , Male , Middle Aged , Pick Disease of the Brain/pathology , Ubiquitin/metabolism , alpha-Synuclein/metabolism
18.
Hum Mol Genet ; 24(21): 6198-212, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26276810

ABSTRACT

Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-Tau(P301L) mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets.


Subject(s)
Brain/ultrastructure , Disease Models, Animal , Tauopathies , tau Proteins/metabolism , Animals , Behavior, Animal , Cell Death , Humans , Mice , Mice, Transgenic , Neurofibrillary Tangles/diagnostic imaging , Neurons/pathology , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Ultrasonography , tau Proteins/genetics
19.
Acta Neuropathol ; 130(1): 93-105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25962793

ABSTRACT

Multiple system atrophy (MSA) is a sporadic neurodegenerative disease clinically characterized by cerebellar signs, parkinsonism, and autonomic dysfunction. Pathologically, MSA is an α-synucleinopathy affecting striatonigral and olivopontocerebellar systems, while neocortical and limbic involvement is usually minimal. In this study, we describe four patients with atypical MSA with clinical features consistent with frontotemporal dementia (FTD), including two with corticobasal syndrome, one with progressive non-fluent aphasia, and one with behavioral variant FTD. None had autonomic dysfunction. All had frontotemporal atrophy and severe limbic α-synuclein neuronal pathology. The neuronal inclusions were heterogeneous, but included Pick body-like inclusions. The latter were strongly associated with neuronal loss in the hippocampus and amygdala. Unlike typical Pick bodies, the neuronal inclusions were positive on Gallyas silver stain and negative on tau immunohistochemistry. In comparison to 34 typical MSA cases, atypical MSA had significantly more neuronal inclusions in anteromedial temporal lobe and limbic structures. While uncommon, our findings suggest that MSA may present clinically and pathologically as a frontotemporal lobar degeneration (FTLD). We suggest that this may represent a novel subtype of FTLD associated with α-synuclein (FTLD-synuclein).


Subject(s)
Brain/pathology , Frontotemporal Lobar Degeneration/pathology , Multiple System Atrophy/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Brain/metabolism , Female , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/physiopathology , Humans , Multiple System Atrophy/genetics , Multiple System Atrophy/physiopathology , alpha-Synuclein/genetics , tau Proteins/metabolism
20.
Acta Neuropathol ; 130(2): 199-214, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900293

ABSTRACT

Globular glial tauopathies (GGTs) are 4-repeat tauopathies neuropathologically characterized by tau-positive, globular glial inclusions, including both globular oligodendroglial inclusions and globular astrocytic inclusions. No mutations have been found in 25 of the 30 GGT cases reported in the literature who have been screened for mutations in microtubule associated protein tau (MAPT). In this report, six patients with GGT (four with subtype III and two with subtype I) were screened for MAPT mutations. They included 4 men and 2 women with a mean age at death of 73 years (55-83 years) and mean age at symptomatic onset of 66 years (50-77 years). Disease duration ranged from 5 to 14 years. All were homozygous for the MAPT H1 haplotype. Three patients had a positive family history of dementia, and a novel MAPT mutation (c.951G>C, p.K317N) was identified in one of them, a patient with subtype III. Recombinant tau protein bearing the lysine-to-asparagine substitution at amino acid residue 317 was used to assess functional significance of the variant on microtubule assembly and tau filament formation. Recombinant p.K317N tau had reduced ability to promote tubulin polymerization. Recombinant 3R and 4R tau bearing the p.K317N mutation showed decreased 3R tau and increased 4R tau filament assembly. These results strongly suggest that the p.K317N variant is pathogenic. Sequencing of MAPT should be considered in patients with GGT and a family history of dementia or movement disorder. Since several individuals in our series had a positive family history but no MAPT mutation, genetic factors other than MAPT may play a role in disease pathogenesis.


Subject(s)
Mutation , Tauopathies/genetics , tau Proteins/genetics , Aged , Aged, 80 and over , Brain/metabolism , Brain/pathology , Female , Genetic Predisposition to Disease , Humans , Male , Microscopy, Electrochemical, Scanning , Microtubules/metabolism , Middle Aged , Pedigree , Polymerization , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Tubulin/metabolism , tau Proteins/isolation & purification , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...