Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 75(5): 398-413, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34016234

ABSTRACT

Semiconducting thin films made from nanocrystals hold potential as composite hybrid materials with new functionalities. With nanocrystal syntheses, composition can be controlled at the sub-nanometer level, and, by tuning size, shape, and surface termination of the nanocrystals as well as their packing, it is possible to select the electronic, phononic, and photonic properties of the resulting thin films. While the ability to tune the properties of a semiconductor from the atomistic- to macro-scale using solution-based techniques presents unique opportunities, it also introduces challenges for process control and reproducibility. In this review, we use the example of well-studied lead sulfide (PbS) nanocrystals and describe the key advances in nanocrystal synthesis and thin-film fabrication that have enabled improvement in performance of photovoltaic devices. While research moves forward with novel nanocrystal materials, it is important to consider what decades of work on PbS nanocrystals has taught us and how we can apply these learnings to realize the full potential of nanocrystal solids as highly flexible materials systems for functional semiconductor thin-film devices. One key lesson is the importance of controlling and manipulating surfaces.

2.
Nat Commun ; 11(1): 2852, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503965

ABSTRACT

The potential of semiconductors assembled from nanocrystals has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectrics, and phase change memory cells. Despite the commercial success of nanocrystal quantum dots as optical absorbers and emitters, applications involving charge transport through nanocrystal semiconductors have eluded exploitation due to the inability to predictively control their electronic properties. Here, we perform large-scale, ab initio simulations to understand carrier transport, generation, and trapping in strongly confined nanocrystal quantum dot-based semiconductors from first principles. We use these findings to build a predictive model for charge transport in these materials, which we validate experimentally. Our insights provide a path for systematic engineering of these semiconductors, which in fact offer previously unexplored opportunities for tunability not achievable in other semiconductor systems.

3.
Nat Commun ; 10(1): 4236, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31530815

ABSTRACT

Phonon engineering of solids enables the creation of materials with tailored heat-transfer properties, controlled elastic and acoustic vibration propagation, and custom phonon-electron and phonon-photon interactions. These can be leveraged for energy transport, harvesting, or isolation applications and in the creation of novel phonon-based devices, including photoacoustic systems and phonon-communication networks. Here we introduce nanocrystal superlattices as a platform for phonon engineering. Using a combination of inelastic neutron scattering and modeling, we characterize superlattice-phonons in assemblies of colloidal nanocrystals and demonstrate that they can be systematically engineered by tailoring the constituent nanocrystals, their surfaces, and the topology of superlattice. This highlights that phonon engineering can be effectively carried out within nanocrystal-based devices to enhance functionality, and that solution processed nanocrystal assemblies hold promise not only as engineered electronic and optical materials, but also as functional metamaterials with phonon energy and length scales that are unreachable by traditional architectures.

4.
J Chem Phys ; 151(24): 241104, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31893923

ABSTRACT

Nanocrystal-based solar cells are promising candidates for next generation photovoltaic applications; however, the most recent improvements to the device chemistry and architecture have been mostly trial-and-error based advancements. Due to complex interdependencies among parameters, determining factors that limit overall solar cell efficiency are not trivial. Furthermore, many of the underlying chemical and physical parameters of nanocrystal-based solar cells have only recently been understood and quantified. Here, we show that this new understanding of interfaces, transport, and origin of trap states in nanocrystal-based semiconductors can be integrated into simulation tools, based on 1D drift-diffusion models. Using input parameters measured in independent experiments, we find excellent agreement between experimentally measured and simulated PbS nanocrystal solar cell behavior without having to fit any parameters. We then use this simulation to understand the impact of interfaces, charge carrier mobility, and trap-assisted recombination on nanocrystal performance. We find that careful engineering of the interface between the nanocrystals and the current collector is crucial for an optimal open-circuit voltage. We also show that in the regime of trap-state densities found in PbS nanocrystal solar cells (∼1017 cm-3), device performance exhibits strong dependence on the trap state density, explaining the sensitivity of power conversion efficiency to small changes in nanocrystal synthesis and nanocrystal thin-film deposition that has been reported in the literature. Based on these findings, we propose a systematic approach to nanocrystal solar cell optimization. Our method for incorporating parameters into simulations presented and validated here can be adopted to speed up the understanding and development of all types of nanocrystal-based solar cells.

5.
J Phys Chem Lett ; 9(7): 1561-1567, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29518338

ABSTRACT

Knowledge of the vibrational structure of a semiconductor is essential for explaining its optical and electronic properties and enabling optimized materials selection for optoelectronic devices. However, measurement of the vibrational density of states of nanomaterials is challenging. Here, using the example of colloidal nanocrystals (quantum dots), we show that the vibrational density of states of nanomaterials can be accurately and efficiently measured with inelastic X-ray scattering (IXS). Using IXS, we report the first experimental measurements of the vibrational density of states for lead sulfide nanocrystals with different halide-ion terminations and for CsPbBr3 perovskite nanocrystals. IXS findings are supported with ab initio molecular dynamics simulations, which provide insight into the origin of the measured vibrational structure and the effect of nanocrystal surface. Our findings highlight the advantages of IXS compared to other methods for measuring the vibrational density of states of nanocrystals such as inelastic neutron scattering and Raman scattering.

6.
Sci Rep ; 7(1): 11718, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916804

ABSTRACT

Engineering the compositional gradient for core/shell semiconductor nanocrystals improves their optical properties. To date, however, the structure of graded core/shell nanocrystal emitters has only been qualitatively described. In this paper, we demonstrate an approach to quantify nanocrystal structure, selecting graded Ag-In-Se/ZnSe core/shell nanocrystals as a proof-of-concept material. A combination of multi-energy small-angle X-ray scattering and electron microscopy techniques enables us to establish the radial distribution of ZnSe with sub-nanometer resolution. Using ab initio shape-retrieval analysis of X-ray scattering spectra, we further determine the average shape of nanocrystals. These results allow us to generate three-dimensional, atomistic reconstructions of graded core/shell nanocrystals. We use these reconstructions to calculate solid-state Zn diffusion in the Ag-In-Se nanocrystals and the lattice mismatch between nanocrystal monolayers. Finally, we apply these findings to propose design rules for optimal shell structure and record-luminescent core/shell nanocrystals.

7.
Chem Commun (Camb) ; 52(72): 10878-81, 2016 Sep 18.
Article in English | MEDLINE | ID: mdl-27530620

ABSTRACT

We synthesize stable colloids of Cu-In-Te and Ag-In-Te nanocrystals using an amide-promoted technique, which enables independent size and composition control, and report the dependence of structural and optical properties on composition and size. Comparison to the synthesis of other ternary I-III-VI nanocrystals gives insight into the reaction mechanism and the generalizability of the amide-promote approach.

8.
ACS Nano ; 9(11): 11134-42, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26370776

ABSTRACT

Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence.

9.
Nat Commun ; 6: 6180, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25625647

ABSTRACT

Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic-organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current-voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode-nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...