Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872315

ABSTRACT

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Subject(s)
COVID-19 , Mycobiome , Humans , Animals , Mice , Antifungal Agents , Dysbiosis , Neutrophils , Candida albicans , Immunoglobulin G
2.
Science ; 381(6657): 483-484, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535732

ABSTRACT

Specialized epithelium secretes an antifungal peptide.


Subject(s)
Antifungal Agents , Paneth Cells , Peptide YY , Antifungal Agents/metabolism , Paneth Cells/metabolism , Peptide YY/metabolism , Animals , Mice
3.
Cell ; 186(3): 466-468, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736299

ABSTRACT

Microbiota-induced IL-17 production mediates CNS processes and animal behavior. However, its role on the peripheral nervous system (PNS) remains largely unknown. Enamorado et al. demonstrate that commensal-specific Th17 cells are recalled following tissue injury to support local nerve regeneration, a process orchestrated by IL-17 signaling on peripheral neurons.


Subject(s)
Central Nervous System , Interleukin-17 , Animals , Peripheral Nervous System , Nerve Regeneration/physiology , Signal Transduction , Peripheral Nerves , Axons/physiology
5.
Nature ; 603(7902): 672-678, 2022 03.
Article in English | MEDLINE | ID: mdl-35296857

ABSTRACT

The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1ß-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.


Subject(s)
Fungi , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Mycobiome , Animals , CRISPR-Cas Systems , Candida albicans , Fungi/genetics , Fungi/pathogenicity , Genetic Variation , Humans , Immunity , Inflammation , Mammals
6.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35176228

ABSTRACT

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Receptors, Interleukin-17/metabolism , Social Behavior , Animals , Fungi , Immunity, Mucosal , Intestinal Mucosa , Mice , Mucous Membrane
7.
Nat Microbiol ; 6(12): 1493-1504, 2021 12.
Article in English | MEDLINE | ID: mdl-34811531

ABSTRACT

Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn's disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn's disease.


Subject(s)
Crohn Disease/microbiology , Fungi/physiology , Gastrointestinal Microbiome , Immunoglobulin A, Secretory/immunology , Symbiosis , Animals , Candida albicans/genetics , Candida albicans/physiology , Crohn Disease/genetics , Crohn Disease/immunology , Female , Fungi/genetics , Host-Pathogen Interactions , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Phagocytes/immunology , Phagocytes/microbiology
8.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33548172

ABSTRACT

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Subject(s)
Antibodies, Fungal/immunology , CARD Signaling Adaptor Proteins/metabolism , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Immunity , Immunoglobulin G/immunology , Mycobiome/immunology , Animals , B-Lymphocytes/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Feces/microbiology , Germinal Center/immunology , Humans , Mice, Inbred C57BL , Phagocytes/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Binding , Signal Transduction
10.
Cell ; 182(3): 641-654.e20, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615085

ABSTRACT

Targeting glycolysis has been considered therapeutically intractable owing to its essential housekeeping role. However, the context-dependent requirement for individual glycolytic steps has not been fully explored. We show that CRISPR-mediated targeting of glycolysis in T cells in mice results in global loss of Th17 cells, whereas deficiency of the glycolytic enzyme glucose phosphate isomerase (Gpi1) selectively eliminates inflammatory encephalitogenic and colitogenic Th17 cells, without substantially affecting homeostatic microbiota-specific Th17 cells. In homeostatic Th17 cells, partial blockade of glycolysis upon Gpi1 inactivation was compensated by pentose phosphate pathway flux and increased mitochondrial respiration. In contrast, inflammatory Th17 cells experience a hypoxic microenvironment known to limit mitochondrial respiration, which is incompatible with loss of Gpi1. Our study suggests that inhibiting glycolysis by targeting Gpi1 could be an effective therapeutic strategy with minimum toxicity for Th17-mediated autoimmune diseases, and, more generally, that metabolic redundancies can be exploited for selective targeting of disease processes.


Subject(s)
Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Glucose-6-Phosphate Isomerase/metabolism , Glycolysis/genetics , Oxidative Phosphorylation , Pentose Phosphate Pathway/physiology , Th17 Cells/metabolism , Animals , Cell Hypoxia/genetics , Cell Hypoxia/immunology , Chimera/genetics , Chromatography, Gas , Chromatography, Liquid , Clostridium Infections/immunology , Cytokines/deficiency , Cytokines/genetics , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Glycolysis/immunology , Homeostasis/genetics , Homeostasis/immunology , Inflammation/genetics , Inflammation/immunology , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Pentose Phosphate Pathway/genetics , Pentose Phosphate Pathway/immunology , RNA-Seq , Single-Cell Analysis , Th17 Cells/immunology , Th17 Cells/pathology
11.
Cell ; 180(1): 79-91.e16, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866067

ABSTRACT

Lymphoid cells that produce interleukin (IL)-17 cytokines protect barrier tissues from pathogenic microbes but are also prominent effectors of inflammation and autoimmune disease. T helper 17 (Th17) cells, defined by RORγt-dependent production of IL-17A and IL-17F, exert homeostatic functions in the gut upon microbiota-directed differentiation from naive CD4+ T cells. In the non-pathogenic setting, their cytokine production is regulated by serum amyloid A proteins (SAA1 and SAA2) secreted by adjacent intestinal epithelial cells. However, Th17 cell behaviors vary markedly according to their environment. Here, we show that SAAs additionally direct a pathogenic pro-inflammatory Th17 cell differentiation program, acting directly on T cells in collaboration with STAT3-activating cytokines. Using loss- and gain-of-function mouse models, we show that SAA1, SAA2, and SAA3 have distinct systemic and local functions in promoting Th17-mediated inflammatory diseases. These studies suggest that T cell signaling pathways modulated by the SAAs may be attractive targets for anti-inflammatory therapies.


Subject(s)
Irritable Bowel Syndrome/metabolism , Serum Amyloid A Protein/metabolism , Th17 Cells/metabolism , Adult , Animals , Autoimmune Diseases/metabolism , Cell Differentiation/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Humans , Inflammation/metabolism , Interleukin-17/metabolism , Irritable Bowel Syndrome/blood , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th1 Cells , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...