Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(10): 4408-4416, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36866978

ABSTRACT

Highly luminescent nanospheres have been demonstrated in enhancing the sensitivity of lateral flow immunoassay (LFIA) due to their loading numerous luminescent dyes. However, the photoluminescence intensities of existing luminescent nanospheres are limited due to the aggregation-caused quenching effect. Herein, highly luminescent aggregation-induced emission luminogens embedded nanospheres (AIENPs) with red emission were introduced as signal amplification probes of LFIA for quantitative detection of zearalenone (ZEN). Optical properties of red-emitted AIENPs were compared with time-resolved dye-embedded nanoparticles (TRNPs). Results showed that red-emitted AIENPs have stronger photoluminescence intensity on the nitrocellulose membrane and superior environmental tolerance. Additionally, we benchmarked the performance of AIENP-LFIA against TRNP-LFIA using the same set of antibodies, materials, and strip readers. Results showed that AIENP-LFIA exhibits good dynamic linearity with the ZEN concentration from 0.195 to 6.25 ng/mL, with half competitive inhibitory concentration (IC50) and detection of limit (LOD) at 0.78 and 0.11 ng/mL, respectively. The IC50 and LOD are 2.07- and 2.36-fold lower than those of TRNP-LFIA. Encouragingly, the precision, accuracy, specificity, practicality, and reliability of this AIENP-LFIA for ZEN quantitation were further characterized. The results verified that the AIENP-LFIA has good practicability for the rapid, sensitive, specific, and accurate quantitative detection of ZEN in corn samples.


Subject(s)
Metal Nanoparticles , Nanospheres , Zearalenone , Zearalenone/analysis , Luminescence , Food Contamination/analysis , Reproducibility of Results , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry
2.
Food Chem ; 412: 135580, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36736185

ABSTRACT

Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.


Subject(s)
Metal Nanoparticles , Ochratoxins , Gold/chemistry , Zea mays/chemistry , Reproducibility of Results , Chromatography, Affinity/methods , Limit of Detection , Metal Nanoparticles/chemistry , Ochratoxins/analysis
3.
Anal Chim Acta ; 1247: 340869, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781245

ABSTRACT

Organic fluorescein dye-embedded fluorescent microspheres (FMs) are currently the most established commercially fluorescent markers, and they have been widely used to improve the sensitivity of immunochromatography assay (ICA). However, these FMs have natural defects, such as the aggregation-caused quenching effect and small Stokes shift, which are not conducive to improving the detection performance of ICA. Herein, two green emitted FMs, namely aggregation-induced emission FMs (AIEFMs) and fluorescein isothiocyanate FMs (FITCFMs), were prepared by swelling the AIE luminogens and FITC dyes into the carboxyl group-modified polystyrene microspheres. The average diameters of AIEFMs and FITCFMs were 350 and 450 nm, respectively. Compared with FITCFMs, the AIEFMs exhibited stronger fluorescence intensity and a larger Stokes shift. These two FMs were used as the labeling markers of ICA for procalcitonin (PCT) detection with the sandwich format. Among them, AIEFM-ICA showed dynamic linear detection of PCT from 7.6 pg mL-1 to 125 ng mL-1 with the limit of detection (LOD) at 3.8 pg mL-1. These values were remarkably superior to those of FITCFM-ICA (linear range from 61 pg mL-1 to 62.5 ng mL-1 and LOD value at 60 pg mL-1). Furthermore, the average recoveries of the intra- and inter-assays of AIEFM-ICA ranged from 86% to 112%, with coefficients of variation ranging from 1.2% to 8.8%, indicating accuracy and precision for PCT quantitative detection. Additionally, the reliability of the developed AIEFM-ICA was further assessed by analyzing 30 real serum samples from systemic inflammatory response by infectious diseases, and the results showed good agreement with the chemiluminescence immunoassay. In conclusion, compared with traditional FITCFMs, green emitted AIEFMs as a novel fluorescent label, exhibits greater potential to enhance the detection performance of the ICA platform.


Subject(s)
Coloring Agents , Luminescence , Microspheres , Reproducibility of Results , Chromatography, Affinity/methods , Fluoresceins , Immunoassay/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...