Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurol ; 22(1): 419, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36357846

ABSTRACT

BACKGROUND: Kernohan-Woltman notch phenomenon (KWNP) classically occurs when a lesion causes compression of the contralateral cerebral peduncle against the tentorium, resulting in ipsilateral hemiparesis. It has been studied clinically, radiologically and electrophysiologically which all confirmed to cause false localizing motor signs. Here, we demonstrate the potential use of fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) to identify KWNP caused by an epidural hematoma. CASE PRESENTATION: A 29-year-old male patient post right-sided traumatic brain injury presenting with persistent ipsilateral hemiparesis. Patient underwent decompressive craniotomy and intracranial hematoma evacuation. Brain magnetic resonance imaging in the postoperative period showed a subtle lesion in the left cerebral peduncle. PET/CT was performed to exclude early brain tumor and explain his ipsilateral hemiparesis. PET/CT imaging demonstrated a focal region of intense 18 F-FDG uptake in the left cerebral peduncle. Throughout the treatment in outpatient neurorehabilitation unit, the patient exhibited a gradual recovery of his right hemiparesis. CONCLUSION: In our case report, for the first time, PET/CT offered microstructural and functional confirmation of KWNP. Moreover, our case suggests that 18 F-FDG PET/CT may serve as an important reference for the probability of functional recovery.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Male , Humans , Adult , Prognosis , Paresis/diagnostic imaging , Paresis/etiology , Hematoma/complications
2.
Environ Pollut ; 265(Pt B): 113876, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32806432

ABSTRACT

The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 µg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.


Subject(s)
Phthalic Acids , Zebrafish , Animals , Dibutyl Phthalate , Heart , Humans
3.
Neurosci Lett ; 705: 143-150, 2019 07 13.
Article in English | MEDLINE | ID: mdl-31029678

ABSTRACT

Hyperexcitability in the corticostriatal glutamatergic pathway may have a pivotal role in the pathogenesis of Parkinson's disease (PD). Metabotropic glutamate receptors (mGluRs) modulate glutamate transmission by both pre- and postsynaptic mechanisms, making them attractive targets for modifying pathological changes in the corticostriatal pathway. Exercise reportedly alleviates motor dysfunction and induced neuroplasticity in glutamatergic transmission. Here, the mGluR-mediated plasticity mechanism underlying behavioral improvement by exercise intervention was investigated. The experimental models were prepared by 6-hydroxydopamine injection into the right medial forebrain bundle. The models were evaluated with the apomorphine-induced rotation test. Starting 2 weeks postoperatively, exercise intervention was applied to the PD + Ex group for 4 weeks. The exercise-intervention effects on locomotor behavior, glutamate levels, and mGluR (mGluR2/3 and mGluR5) expression in hemiparkinsonian rats were investigated. The results showed that hemiparkinsonian rats have a significant increase in extracellular glutamate levels in the lesioned-lateral striatum. MGluR2/3 protein expression was reduced while mGluR5 protein expression was increased in the striatum. Notably, treadmill exercise markedly reversed these abnormal changes in the corticostriatal glutamate system and promoted motor performance in PD rats. These findings suggest that mGluR-mediated glutamatergic transmission in the corticostriatal pathway may serve as an attractive target for exercise-induced neuroplasticity in hemiparkinsonian rats.


Subject(s)
Corpus Striatum/physiopathology , Exercise Therapy , Locomotion/physiology , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/biosynthesis , Receptors, Metabotropic Glutamate/biosynthesis , Animals , Corpus Striatum/metabolism , Glutamic Acid/metabolism , Male , Medial Forebrain Bundle/drug effects , Oxidopamine , Rats
4.
Cell Transplant ; 27(7): 1111-1125, 2018 07.
Article in English | MEDLINE | ID: mdl-29909687

ABSTRACT

The current study explored whether intra-articular (IA) injection of autologous adipose mesenchymal stem cells (ASCs) combined with hyaluronic acid (HA) achieved better therapeutic efficacy than autologous stromal vascular fraction (SVF) combined with HA to prevent osteoarthritis (OA) progression and determined how long autologous ASCs combined with HA must remain in the joint to observe efficacy. OA models were established by performing anterior cruciate ligament transection (ACLT) and medial meniscectomy (MM). Autologous SVF (1×107 mononuclear cells), autologous low-dose ASCs (1×107), and autologous high-dose ASCs (5×107) combined with HA, and HA alone, or saline alone were injected into the OA model animals at 12 and 15 weeks after surgery, respectively. Compared with SVF+HA treatment, low-dose ASC+HA treatment yielded better magnetic resonance imaging (MRI) scores and macroscopic results, while the cartilage thickness of the tibial plateau did not differ between low, high ASC+HA and SVF+HA treatments detected by micro-computed tomography (µCT). Immunohistochemistry revealed that high-dose ASC+HA treatment rescued hypertrophic chondrocytes expressing collagen X in the deep area of articular cartilage. Western blotting analysis indicated the high- and low-dose ASC+HA groups expressed more collagen X than did the SVF+HA group. Enzyme-linked immunosorbent assay showed treatment with both ASC+HA and SVF+HA resulted in differing anti-inflammatory and trophic effects. Moreover, superparamagnetic iron oxide particle (SPIO)-labeled autologous ASC signals were detected by MRI at 2 and 18 weeks post-injection and were found in the lateral meniscus at 2 weeks and in the marrow cavity of the femoral condyle at 18 weeks post-injection. Thus, IA injection of autologous ASC+HA may demonstrate better efficacy than autologous SVF+HA in blocking OA progression and promoting cartilage regeneration, and autologous ASCs (5×107 cells) combined with HA potentially survive for at least 18 weeks after IA injection.


Subject(s)
Adipose Tissue/cytology , Hyaluronic Acid/therapeutic use , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Osteoarthritis/veterinary , Sheep Diseases/therapy , Adipose Tissue/blood supply , Animals , Cells, Cultured , Male , Mesenchymal Stem Cell Transplantation/methods , Osteoarthritis/pathology , Osteoarthritis/therapy , Sheep , Sheep Diseases/pathology , Stromal Cells/cytology , Stromal Cells/transplantation , Transplantation, Autologous/methods
5.
Tissue Eng Part A ; 24(3-4): 219-233, 2018 02.
Article in English | MEDLINE | ID: mdl-28486025

ABSTRACT

Although a number of studies have reported efficacy of autologous adipose-derived mesenchymal stem cells (AD-MSCs) in treating osteoarthritis (OA) no reliable evidences demonstrate whether allogeneic AD-MSCs can efficiently block OA progression in a large animal model. This study explored the efficacy and survival of allogeneic AD-MSCs combined with hyaluronic acid (HA) after intra-articular (IA) injection in a sheep OA model, which were conventionally established by anterior cruciate ligament resection and medial meniscectomy. Allogeneic AD-MSCs from donor sheep at high (5 × 107 cells) and low (1 × 107 cells) doses combined with HA, HA alone, or saline alone were injected into the OA sheep at 3 and 6 weeks after surgery, respectively. Evaluations by magnetic resonance imaging (MRI), macroscopy, micro-computed tomography, and cartilage-specific staining demonstrated that AD-MSCs+HA treated groups preserved typical articular cartilage feature. Inflammatory factors from synovial fluid of AD-MSCs+HA treated groups were significantly lower than those in the HA alone group. Notably, transforming growth factor beta 1 and insulin-like growth factor 1 were detected in the supernatant of cultured AD-MSCs. In addition, labeling signals of allogeneic AD-MSCs could be detected by MRI after 14 weeks of injection and be found in synovium by histology. These results indicated that IA injection of allogeneic AD-MSCs combined with HA could efficiently block OA progression and promote cartilage regeneration and allogeneic AD-MSCs might survive at least 14 weeks after IA injection.


Subject(s)
Adipocytes/cytology , Hyaluronic Acid/therapeutic use , Mesenchymal Stem Cells/cytology , Osteoarthritis/drug therapy , Osteoarthritis/therapy , Animals , Disease Models, Animal , Injections, Intra-Articular , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cells/physiology , Osteoarthritis/metabolism , Sheep , Synovial Fluid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...