Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570353

ABSTRACT

Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.

2.
PLoS One ; 17(8): e0271718, 2022.
Article in English | MEDLINE | ID: mdl-36006904

ABSTRACT

Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.


Subject(s)
Inbreeding , Semen , Animals , Cattle/genetics , Genome/genetics , Genomics , Homozygote , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...