Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Front Neurosci ; 17: 1301926, 2023.
Article in English | MEDLINE | ID: mdl-38075270

ABSTRACT

Objective: Impaired interhemispheric connectivity and corpus callosum atrophy have been linked to cognitive impairment in Alzheimer's disease (AD). Existing evidence indicates that repetitive transcranial magnetic stimulation (rTMS) targeting the bilateral precuneus may enhance cognitive function in AD. This study aims to investigate the effects of precuneus rTMS on cognitive function, as well as alterations in interhemispheric functional connectivity (FC) and its structural basis in patients with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). Methods: A total of 14 patients with SCD and 16 patients with MCI were enrolled in this study and received 10 Hz rTMS intervention on the bilateral precuneus for 2 weeks. Neurocognitive scales, structural and functional magnetic resonance imaging were collected at enrollment and after the rTMS intervention. Interhemispheric FC was assessed using mirror homotopic functional connectivity (VMHC), while the structural equation modeling (SEM) was employed to analyze the relationship between corpus callosum volume, interhemispheric connectivity, and cognitive function after rTMS intervention. Results: The precuneus rTMS not only enhanced episodic memory in SCD, but also improved multiple cognitive domains in MCI. Post-rTMS intervention, decreased VMHC values in the lingual cortex, middle occipital gyrus, putamen, and fusiform gyrus were observed in SCD, and an increased VMHC value in the postcentral gyrus along with reduced VMHC value in the cerebellum and putamen in MCI. After intervention, more brain regions show decreased FC in SCD and MCI patients, suggesting that precuneus rTMS may protect cerebral cortical plasticity by reducing excessive functional compensation, and thus improve cognitive function. The SEM indicated that the corpus callosum serves as the structural foundation for rTMS regulation of interhemispheric FC to further improve cognitive function. Conclusion: 10 Hz rTMS in the bilateral precuneus could be a promising strategy to improve cognitive function in patients with SCD and MCI. Our study implies that improvements in cognition brought about by precuneus rTMS may result from the remodeling of interhemispheric FC, with the corpus callosum possibly acting as the anatomical basis for functional modulation.

2.
Front Aging Neurosci ; 15: 1165908, 2023.
Article in English | MEDLINE | ID: mdl-37448688

ABSTRACT

Background: Mild cognitive impairment (MCI) depicts a transitory phase between healthy elderly and the onset of Alzheimer's disease (AD) with worsening cognitive impairment. Some functional MRI (fMRI) research indicated that the frontoparietal network (FPN) could be an essential part of the pathophysiological mechanism of MCI. However, damaged FPN regions were not consistently reported, especially their interactions with other brain networks. We assessed the fMRI-specific anomalies of the FPN in MCI by analyzing brain regions with functional alterations. Methods: PubMed, Embase, and Web of Science were searched to screen neuroimaging studies exploring brain function alterations in the FPN in MCI using fMRI-related indexes, including the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity. We integrated distinctive coordinates by activating likelihood estimation, visualizing abnormal functional regions, and concluding functional alterations of the FPN. Results: We selected 29 studies and found specific changes in some brain regions of the FPN. These included the bilateral dorsolateral prefrontal cortex, insula, precuneus cortex, anterior cingulate cortex, inferior parietal lobule, middle temporal gyrus, superior frontal gyrus, and parahippocampal gyrus. Any abnormal alterations in these regions depicted interactions between the FPN and other networks. Conclusion: The study demonstrates specific fMRI neuroimaging alterations in brain regions of the FPN in MCI patients. This could provide a new perspective on identifying early-stage patients with targeted treatment programs. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023432042, identifier: CRD42023432042.

3.
CNS Neurosci Ther ; 29(6): 1512-1524, 2023 06.
Article in English | MEDLINE | ID: mdl-36942514

ABSTRACT

OBJECTIVES: Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are known as the preclinical and early stage of Alzheimer's disease (AD). The dorsal attention network (DAN) is mainly responsible for the "top-down" attention process. However, previous studies mainly focused on single functional modality and limited structure. This study aimed to investigate the multimodal alterations of DAN in SCD and aMCI to assess their diagnostic value in preclinical and early-stage AD. METHODS: Resting-state functional magnetic resonance imaging (MRI) was carried out to measure the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC). Structural MRI was used to calculate the gray matter volume (GMV) and cortical thickness. Moreover, receiver-operating characteristic (ROC) analysis was used to distinguish these alterations in SCD and aMCI. RESULTS: The SCD and aMCI groups showed both decreased ReHo in the right middle temporal gyrus (MTG) and decreased GMV compared to healthy controls (HCs). Especially in the SCD group, there were increased fALFF and increased ReHo in the left inferior occipital gyrus (IOG), decreased fALFF and increased FC in the left inferior parietal lobule (IPL), and reduced cortical thickness in the right inferior temporal gyrus (ITG). Furthermore, functional and structural alterations in the SCD and aMCI groups were closely related to episodic memory (EM), executive function (EF), and information processing speed (IPS). The combination of multiple indicators of DAN had a high accuracy in differentiating clinical stages. CONCLUSIONS: Our current study demonstrated functional and structural alterations of DAN in SCD and aMCI, especially in the MTG, IPL, and SPL. Furthermore, cognitive performance was closely related to these significant alterations. Our study further suggested that the combined multiple indicators of DAN could be acted as the latent neuroimaging markers of preclinical and early-stage AD for their high diagnostic value.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Brain/pathology , Alzheimer Disease/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Brain Mapping/methods , Executive Function , Magnetic Resonance Imaging/methods
4.
CNS Neurosci Ther ; 29(8): 2177-2185, 2023 08.
Article in English | MEDLINE | ID: mdl-36942520

ABSTRACT

BACKGROUND: In Parkinson's disease (PD), inflammation may lead to the degeneration of dopaminergic (DAergic) neurons. Previous studies showed that inflammatory mediators mainly contributed to this phenomenon. On the other hand, invasive neuromodulation methods such as deep brain stimulation (DBS) have better therapeutic effects for PD. One possibility is that DBS improves PD by influencing inflammation. Therefore, we further explored the mechanisms underlying inflammatory mediators and DBS in the pathogenesis of PD. METHODS: We measured serum levels of two inflammatory markers, namely RANTES (regulated on activation, normal T cell expressed and secreted) and tumor necrosis factor-alpha (TNF-α), using Luminex assays in 109 preoperative DBS PD patients, 49 postoperative DBS PD patients, and 113 age- and sex-matched controls. The plasma protein data of the different groups were then statistically analyzed. RESULTS: RANTES (p < 0.001) and TNF-α (p = 0.005) levels differed significantly between the three groups. A strong and significant correlation between RANTES levels and Hoehn-Yahr (H-Y) stage was observed in preoperative PD patients (rs  = 0.567, p < 0.001). Significant correlations between RANTES levels and Unified Parkinson's Disease Rating Scale III (UPDRS III) score (rs1  = 0.644, p = 0.033 and rs2  = 0.620, p = 0.042) were observed in matched patients. No correlation was observed for TNF-α levels. CONCLUSION: The results of this study indicate that PD patients have a persistent inflammatory profile, possibly via recruitment of activated monocytes, macrophages, and T lymphocytes to the central nervous system (CNS). DBS was shown to have a significant therapeutic effect on PD, which may arise by improving the inflammatory environment of the central nervous system.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Parkinson Disease/pathology , Chemokine CCL5/therapeutic use , Deep Brain Stimulation/methods , Tumor Necrosis Factor-alpha , Treatment Outcome , Central Nervous System/pathology , Inflammation/therapy
5.
Psychiatry Res ; 319: 115000, 2023 01.
Article in English | MEDLINE | ID: mdl-36502711

ABSTRACT

The progressive mild cognitive impairment (pMCI) is associated with an increased risk of Alzheimer's disease (AD). Many studies have reported the disrupted brain alteration during the imminent conversion from pMCI to AD. However, the subtle difference of structural and functional of inter-hemispheric between pMCI and stable mild cognitive impairment (sMCI) remains unknown. In the present study, we scanned the multimodal magnetic resonance imaging of 38 sMCI, 26 pMCI, and 50 healthy controls (HC) and assessed the cognitive function. The voxel-mirrored homotopic connectivity (VMHC) and volume of corpus callosum were calculated. A structural equation modeling (SEM) was established to determine the relationships between the corpus callosum, the inter-hemispheric connectivity, and cognitive assessment. Compared to sMCI, pMCI exhibited decreased VMHC in insular and thalamus, and reduced volume of corpus callosum. SEM results showed that decreased inter-hemispheric connectivity was directly associated with cognitive impairment and corpus callosum atrophy, and corpus callosum atrophy indirectly caused cognitive impairment by mediating inter-hemispheric connectivity in pMCI. In conclusion, the destruction of homotopic connectivity is related to cognitive impairment, and the corpus callosum atrophy partially mediates the association between the homotopic connectivity and cognitive impairment in pMCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Corpus Callosum/diagnostic imaging , Magnetic Resonance Imaging/methods , Disease Progression
6.
Front Neurol ; 13: 982630, 2022.
Article in English | MEDLINE | ID: mdl-36203973

ABSTRACT

Purpose: To explore changes in the brain structural network in patients with cerebellar infarction on different sides and their correlations with changes in cognitive function. Methods: Nineteen patients with acute left posterior cerebellar infarction and 18 patients with acute right posterior cerebellar infarction seen from July 2016 to September 2019 in the Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, were selected. A total of 27 healthy controls matched for sex, age, and years of education were recruited. The subjects underwent head diffusion magnetic resonance imaging examination and neuropsychological cognitive scale evaluation, and we analyzed changes in brain structural network properties in patients with cerebellar infarction and their correlation with changes in patients' cognitive function. Results: The Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment (MOCA) and the Rey auditory verbal learning test (RAVLT) scores in the left and right cerebellar infarction groups were significantly lower than those in the healthy control group (p < 0.05). In addition, the digit span test (DST) scores were lower in the left cerebellar infarction group (p < 0.05); the trail-making test (TMT) times in the right cerebellar infarction group were significantly higher than those in the left cerebellar infarction group (p < 0.05). Meanwhile, the left and right cerebellar infarction groups had abnormal brain topological properties, including clustering coefficient, shortest path length, global efficiency, local efficiency and nodal efficiency. After unilateral cerebellar infarction, bilateral cerebral nodal efficiency was abnormal. Correlation analysis showed that there was a close correlation between decreased processing speed in patients with left cerebellar infarction and decreased efficiency of right cerebral nodes (p < 0.05), and there was a close relationship between executive dysfunction and decreased efficiency of left cerebral nodes in patients with right cerebellar infarction (p < 0.05). Conclusion: Patients with cerebellar infarction have cognitive impairment. Unilateral cerebellar infarction can reduce the network efficiency of key regions in the bilateral cerebral hemispheres, and these abnormal changes are closely related to patient cognitive impairment. The results of this study provide evidence for understanding the underlying neural mechanisms of cerebellar cognitive impairment and suggest that brain topological network properties may be markers of cerebellar cognitive impairment.

7.
Front Aging Neurosci ; 14: 879836, 2022.
Article in English | MEDLINE | ID: mdl-35693335

ABSTRACT

Background: Both subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) have a high risk of progression to Alzheimer's disease (AD). While most of the available evidence described changes in functional connectivity (FC) in SCD and aMCI, there was no confirmation of changes in functional connectivity density (FCD) that have not been confirmed. Therefore, the purpose of this study was to investigate the specific alterations in resting-state FCD in SCD and aMCI and further assess the extent to which these changes can distinguish the preclinical and early-stage AD. Methods: A total of 57 patients with SCD, 59 patients with aMCI, and 78 healthy controls (HC) were included. The global FCD, local FCD, and long-range FCD were calculated for each voxel to identify brain regions with significant FCD alterations. The brain regions with abnormal FCD were then used as regions of interest for FC analysis. In addition, we calculated correlations between neuroimaging alterations and cognitive function and performed receiver-operating characteristic analyses to assess the diagnostic effect of the FCD and FC alterations on SCD and aMCI. Results: FCD mapping revealed significantly increased global FCD in the left parahippocampal gyrus (PHG.L) and increased long-range FCD in the left hippocampus for patients with SCD when compared to HCs. However, when compared to SCD, patients with aMCI showed significantly decreased global FCD and long-range FCD in the PHG.L. The follow-up FC analysis further revealed significant variations between the PHG.L and the occipital lobe in patients with SCD and aMCI. In addition, patients with SCD also presented significant changes in FC between the left hippocampus, the left cerebellum anterior lobe, and the inferior temporal gyrus. Moreover, changes in abnormal indicators in the SCD and aMCI groups were significantly associated with cognitive function. Finally, combining FCD and FC abnormalities allowed for a more precise differentiation of the clinical stages. Conclusion: To our knowledge, this study is the first to investigate specific alterations in FCD and FC for both patients with SCD and aMCI and confirms differential abnormalities that can serve as potential imaging markers for preclinical and early-stage Alzheimer's disease (AD). Also, it adds a new dimension of understanding to the diagnosis of SCD and aMCI as well as the evaluation of disease progression.

8.
Brain Stimul ; 15(4): 910-920, 2022.
Article in English | MEDLINE | ID: mdl-35700915

ABSTRACT

INTRODUCTION: Evidence indicates that the cerebellum is involved in cognitive processing. However, the specific mechanisms through which the cerebellum repetitive transcranial magnetic stimulation (rTMS) contributes to the cognitive state are unclear. METHODS: In the current randomized, double-blind, sham-controlled trial, 27 patients with Alzheimer's disease (AD) were randomly allotted to one of the two groups: rTMS-real or rTMS-sham. We investigated the efficacy of a four-week treatment of bilateral cerebellum rTMS to promote cognitive recovery and alter specific cerebello-cerebral functional connectivity. RESULTS: The cerebellum rTMS significantly improves multi-domain cognitive functions, directly associated with the observed intrinsic functional connectivity between the cerebellum nodes and the dorsolateral prefrontal cortex (DLPFC), medial frontal cortex, and the cingulate cortex in the real rTMS group. In contrast, the sham stimulation showed no significant impact on the clinical improvements and the cerebello-cerebral connectivity. CONCLUSION: Our results depict that 5 Hz rTMS of the bilateral cerebellum is a promising, non-invasive treatment of cognitive dysfunction in AD patients. This cognitive improvement is accompanied by brain connectivity modulation and is consistent with the pathophysiological brain disconnection model in AD patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Cerebellum , Cognition/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Humans , Prefrontal Cortex , Transcranial Magnetic Stimulation/methods , Treatment Outcome
9.
Front Neurosci ; 16: 876568, 2022.
Article in English | MEDLINE | ID: mdl-35557608

ABSTRACT

Background: Mild cognitive impairment (MCI) is known as the prodromal stage of the Alzheimer's disease (AD) spectrum. The recent studies have advised that functional alterations in the dorsal attention network (DAN) could be used as a sensitive marker to forecast the progression from MCI to AD. Therefore, our aim was to investigate specific functional alterations in the DAN in MCI. Methods: We systematically searched PubMed, EMBASE, and Web of Science and chose relevant articles based on the three functional indicators, the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the DAN in MCI. Based on the activation likelihood estimation, we accomplished the aggregation of specific coordinates and the analysis of functional alterations. Results: A total of 38 studies were involved in our meta-analysis. By summing up included articles, we acquired specific brain region alterations in the DAN mainly in the superior temporal gyrus (STG), middle temporal gyrus (MTG), superior frontal gyrus (SFG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), precentral gyrus (preCG), inferior parietal lobule (IPL), superior parietal lobule (SPL). At the same time, the key area that shows anti-interaction with default mode network included the IPL in the DAN. The one showing interactions with executive control network was mainly in the MFG. Finally, the frontoparietal network showed a close connection with DAN especially in the IPL and IFG. Conclusion: This study demonstrated abnormal functional markers in the DAN and its interactions with other networks in MCI group, respectively. It provided the foundation for future targeted interventions in preventing the progression of AD. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021287958].

10.
CNS Neurosci Ther ; 28(3): 343-353, 2022 03.
Article in English | MEDLINE | ID: mdl-34981639

ABSTRACT

OBJECTIVE: To investigate the factors influencing enlarged perivascular space (EPVS) characteristics at the onset of acute ischemic stroke (AIS), and whether the PVS characteristics can predict later post-stroke epilepsy (PSE). METHODS: A total of 312 patients with AIS were identified, of whom 58/312 (18.6%) developed PSE. Twenty healthy participants were included as the control group. The number of PVS in the basal ganglia (BG), centrum semiovale (CS), and midbrain (MB) was manually calculated on T2 -weighted MRI. The scores and asymmetry index (AI) of EPVS in each region were compared among the enrolled participants. Other potential risk factors for PSE were also analyzed, including NIHSS at admission and stroke etiologies. RESULTS: The EPVS scores were significantly higher in the bilateral BG and CS of AIS patients compared to those of the control group (both p < 0.01). No statistical differences in EPVS scores in BG, CS, and MB were obtained between the PSE group and the nonepilepsy AIS group (all p > 0.01). However, markedly different AI scores in CS were found between the PSE group and the nonepilepsy AIS group (p = 0.004). Multivariable analysis showed that high asymmetry index of EPVS (AI≥0.2) in CS was an independent predictor for PSE (OR = 3.7, 95% confidence interval 1.5-9.1, p = 0.004). CONCLUSIONS: Asymmetric distribution of EPVS in CS may be an independent risk factor and a novel imaging biomarker for the development of PSE. Further studies to understand the mechanisms of this association and confirmation with larger patient populations are warranted.


Subject(s)
Epilepsy , Glymphatic System , Ischemic Stroke , Stroke , Basal Ganglia , Corpus Callosum , Epilepsy/diagnostic imaging , Epilepsy/etiology , Humans , Magnetic Resonance Imaging , Stroke/complications , Stroke/diagnostic imaging
11.
ACS Chem Neurosci ; 13(1): 120-133, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34923823

ABSTRACT

The incidence and prevalence of anosognosia are highly variable in amnestic mild cognitive impairment (aMCI) patients. The study aims to explore the neuropathological mechanism of anosognosia in aMCI patients using two different but complementary technologies, including 18F-flortaucipir positron emission tomography and resting state functional magnetic resonance imaging. The study found that anosognosia was related to higher tau accumulation in the left medial orbitofrontal cortex (OFC), left posterior cingulate cortex, and right precuneus in aMCI patients. Intrinsic functional connectivity analyses found significant correlations between anosognosia index and hypoconnectivity between the left medial OFC and left middle temporal gyrus (MTG), right precuneus and left lingual gyrus. Longitudinally, the connectivity of these brain regions as well as the right precuneus and right cuneus showed hyperconnectivity in aMCI patients with anosognosia. The anosognosia index was also correlated with AD pathological markers (i.e., Aß, t-tau, and p-tau) and brain glucose metabolism in aMCI patients. In conclusion, anosognosia in aMCI patients is associated with the dysfunction of medial OFC-MTG circuit and the precuneus-visual cortex circuit and accelerates clinical progression to AD dementia.


Subject(s)
Agnosia , Cognitive Dysfunction , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography
12.
J Alzheimers Dis ; 85(2): 605-614, 2022.
Article in English | MEDLINE | ID: mdl-34864671

ABSTRACT

BACKGROUND: Accumulating studies have implicated thyroid dysfunction in the pathogenesis of Alzheimer's disease (AD). OBJECTIVE: This study aimed to explore the association between thyroid hormone (TH) levels and cerebrospinal fluid (CSF) biomarkers for AD continuum among euthyroid subjects. METHODS: In all, 93 clinically euthyroid subjects with a cognitive decline were included in this prospective cross-sectional study and were divided into groups with abnormal AD biomarkers (belonging to the "Alzheimer's continuum"; A+ patients) and those with "normal AD biomarkers" or "non-AD pathological changes" (A-patients), according to the ATN research framework classification for AD. A partial correlation analysis of serum thyroid-stimulating hormone (TSH) or TH levels with CSF biomarkers was conducted. The predictor for A+ patients was analyzed via binary logistic regressions. Finally, the diagnostic significance of individual biochemical predictors for A+ patients was estimated via receiver operating characteristic curve analysis. RESULTS: Serum total triiodothyronine (TT3) and free triiodothyronine (FT3) levels were found to affect the levels of CSF amyloid-ß (Aß)42 and the ratios of Aß42/40. Further, FT3 was found to be a significant predictor for A+ via binary logistic regression modeling. Moreover, FT3 showed a high diagnostic value for A+ in euthyroid subjects. CONCLUSION: Even in a clinical euthyroid state, low serum FT3 and TT3 levels appear to be differentially associated with AD-specific CSF changes. These data indicate that serum FT3 is a strong candidate for differential diagnosis between AD continuum and non-AD dementia, which benefits the early diagnosis and effective management of preclinical and clinical AD patients.


Subject(s)
Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Thyrotropin/metabolism , Triiodothyronine/blood , Aged , Alzheimer Disease/physiopathology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Middle Aged , Neuropsychological Tests , Prospective Studies , ROC Curve , Thyroid Function Tests , Thyrotropin/blood , Thyrotropin/cerebrospinal fluid , Triiodothyronine/cerebrospinal fluid
13.
Front Neurol ; 12: 649233, 2021.
Article in English | MEDLINE | ID: mdl-34630270

ABSTRACT

Background: Subcortical vascular cognitive impairment (sVCI), caused by cerebral small vessel disease, accounts for the majority of vascular cognitive impairment, and is characterized by an insidious onset and impaired memory and executive function. If not recognized early, it inevitably develops into vascular dementia. Several quantitative studies have reported the consistent results of brain regions in sVCI patients that can be used to predict dementia conversion. The purpose of the study was to explore the exact abnormalities within the brain in sVCI patients by combining the coordinates reported in previous studies. Methods: The PubMed, Embase, and Web of Science databases were thoroughly searched to obtain neuroimaging articles on the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in sVCI patients. According to the activation likelihood estimation (ALE) algorithm, a meta-analysis based on coordinate and functional connectivity modeling was conducted. Results: The quantitative meta-analysis included 20 functional imaging studies on sVCI patients. Alterations in specific brain regions were mainly concentrated in the frontal lobes including the middle frontal gyrus, superior frontal gyrus, medial frontal gyrus, and precentral gyrus; parietal lobes including the precuneus, angular gyrus, postcentral gyrus, and inferior parietal lobule; occipital lobes including the lingual gyrus and cuneus; temporal lobes including the fusiform gyrus and middle temporal gyrus; and the limbic system including the cingulate gyrus. These specific brain regions belonged to important networks known as the default mode network, the executive control network, and the visual network. Conclusion: The present study determined specific abnormal brain regions in sVCI patients, and these brain regions with specific changes were found to belong to important brain functional networks. The findings objectively present the exact abnormalities within the brain, which help further understand the pathogenesis of sVCI and identify them as potential imaging biomarkers. The results may also provide a basis for new approaches to treatment.

14.
Seizure ; 92: 189-194, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34551365

ABSTRACT

PURPOSE: This study aimed to investigate the incidence and predictors of epilepsy after anti-neuronal antibody-positive autoimmune encephalitis (AIE). The clinical outcomes of patients with epilepsy after AIE were also explored. METHODS: A total of 111 AIE patients were retrospectively evaluated. Post-AIE epilepsy (PAEE) was defined as at least one unprovoked seizure occurring six or more months after discharge from hospital. RESULTS: The incidence of acute symptomatic seizures was 80.2% (89/111) in our AIE patients. Furthermore, of the 89 AIE patients with seizures, 29 (32.6%) presented with seizures as the initial symptom. Overall, 44 out of 111 AIE patients (39.6%) had unprovoked seizures after six months, meeting our definition of PAEE. The independent risk factors for PAEE incidence included an initial presentation with new-onset refractory status epilepticus (NORSE), delayed immunotherapy treatment, the complication of a lung infection during admission, the requirement for mechanical ventilation during hospitalization, parietal lesions observed in magnetic resonance imaging (MRI), and focal slow waves on electroencephalographic (EEG) monitoring. CONCLUSIONS: Early initiation of immunotherapy and lung infection treatment may reduce the risk of conversion of symptomatic seizures to chronic epilepsy in the acute phase of AIE. In general, PAEE patients could have a good prognosis if treated properly and in a timely fashion.


Subject(s)
Epilepsy , Hashimoto Disease , Electroencephalography , Encephalitis , Epilepsy/epidemiology , Epilepsy/etiology , Epilepsy/therapy , Humans , Prognosis , Retrospective Studies
15.
Front Aging Neurosci ; 13: 695210, 2021.
Article in English | MEDLINE | ID: mdl-34381352

ABSTRACT

Background Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia. Amnestic MCI (aMCI) and non-amnestic MCI are the two subtypes of MCI with the former having a higher risk for progressing to Alzheimer's disease (AD). Compared with healthy elderly adults, individuals with MCI have specific functional alterations in the salience network (SN). However, no consistent results are documenting these changes. This meta-analysis aimed to investigate the specific functional alterations in the SN in MCI and aMCI. Methods: We systematically searched PubMed, Embase, and Web of Science for scientific neuroimaging literature based on three research methods, namely, functional connectivity (FC), regional homogeneity (ReHo), and the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF). Then, we conducted the coordinate-based meta-analysis by using the activation likelihood estimation algorithm. Results: In total, 30 functional neuroimaging studies were included. After extracting the data and analyzing it, we obtained specific changes in some brain regions in the SN including decreased ALFF/fALFF in the left superior temporal gyrus, the insula, the precentral gyrus, and the precuneus in MCI and aMCI; increased FC in the thalamus, the caudate, the superior temporal gyrus, the insula, and the cingulate gyrus in MCI; and decreased ReHo in the anterior cingulate gyrus in aMCI. In addition, as to FC, interactions of the SN with other networks including the default mode network and the executive control network were also observed mainly in the middle frontal gyrus and superior frontal gyrus in MCI and inferior frontal gyrus in aMCI. Conclusions: Specific functional alternations in the SN and interactions of the SN with other networks in MCI could be useful as potential imaging biomarkers for MCI or aMCI. Meanwhile, it provided a new insight in predicting the progression of health to MCI or aMCI and novel targets for proper intervention to delay the progression. Systematic Review Registration: [PROSPERO], identifier [No. CRD42020216259].

16.
Front Aging Neurosci ; 13: 671351, 2021.
Article in English | MEDLINE | ID: mdl-34248603

ABSTRACT

Background: The spectrum of early Alzheimer's disease (AD) is thought to include subjective cognitive impairment, early mild cognitive impairment (eMCI), and late mild cognitive impairment (lMCI). Choline dysfunction affects the early progression of AD, in which the basal nucleus of Meynert (BNM) is primarily responsible for cortical cholinergic innervation. The aims of this study were to determine the abnormal patterns of BNM-functional connectivity (BNM-FC) in the preclinical AD spectrum (SCD, eMCI, and lMCI) and further explore the relationships between these alterations and neuropsychological measures. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was used to investigate FC based on a seed mask (BNM mask) in 28 healthy controls (HC), 30 SCD, 24 eMCI, and 25 lMCI patients. Furthermore, the relationship between altered FC and neurocognitive performance was examined by a correlation analysis. The receiver operating characteristic (ROC) curve of abnormal BNM-FC was used to specifically determine the classification ability to differentiate the early AD disease spectrum relative to HC (SCD and HC, eMCI and HC, lMCI and HC) and pairs of groups in the AD disease spectrum (eMCI and SCD, lMCI and SCD, eMCI and lMCI). Results: Compared with HC, SCD patients showed increased FC in the bilateral SMA and decreased FC in the bilateral cerebellum and middle frontal gyrus (MFG), eMCI patients showed significantly decreased FC in the bilateral precuneus, and lMCI individuals showed decreased FC in the right lingual gyrus. Compared with the SCD group, the eMCI group showed decreased FC in the right superior frontal gyrus (SFG), while the lMCI group showed decreased FC in the left middle temporal gyrus (MTG). Compared with the eMCI group, the lMCI group showed decreased FC in the right hippocampus. Interestingly, abnormal FC was associated with certain cognitive domains and functions including episodic memory, executive function, information processing speed, and visuospatial function in the disease groups. BNM-FC of SFG in distinguishing eMCI from SCD; BNM-FC of MTG in distinguishing lMCI from SCD; BNM-FC of the MTG, hippocampus, and cerebellum in distinguishing SCD from HC; and BNM-FC of the hippocampus and MFG in distinguishing eMCI from lMCI have high sensitivity and specificity. Conclusions: The abnormal BNM-FC patterns can characterize the early disease spectrum of AD (SCD, eMCI, and lMCI) and are closely related to the cognitive domains. These new and reliable findings will provide a new perspective in identifying the early disease spectrum of AD and further strengthen the role of cholinergic theory in AD.

17.
Front Neurol ; 12: 673347, 2021.
Article in English | MEDLINE | ID: mdl-34276536

ABSTRACT

Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis is a rare autoimmune disease that is characterized by acute cognitive impairment, mental symptoms, and seizures. The high comorbidity rate between anti-AMPA receptor (AMPAR) encephalitis and other somatic diseases, such as malignancy, has revealed the possibility of potential copathogenesis. However, there have not yet been reports about anti-AMPAR encephalitis with concomitant cerebrospinal fluid (CSF) biomarkers consistent with Alzheimer disease (AD). Herein, we present the case of an elderly male patient with autoimmune encephalitis (AE) presenting with anti-AMPA1-R and anti-AMPA2-R antibodies, as well as CSF biomarkers of AD. The patient was hospitalized with acute memory decline for 1 week. Anti-AMPA1-R and anti-AMPA2-R antibodies were positively detected in CSF, and the anti-AMPA2-R antibody was also present in the serum. Additionally, the biomarkers of AD were concurrently present in CSF (Aß1-42 = 245.70 pg/mL, t-Tau = 894.48 pg/mL, p-Tau = 78.66 pg/mL). After administering a combined treatment of intravenous immunoglobulin and glucocorticoids, the patient recovered significantly, and his cognitive function achieved a sustained remission during 2 months' follow-up. This case raises the awareness of a possible interaction between AE and changes of CSF biomarkers. We speculated that the existence of AMPAR antibodies can induce changes of CSF, and other pathological alterations. This present report highlights that a potential relationship exists among AE and provides a warning when making the diagnosis of AD.

18.
J Alzheimers Dis ; 83(1): 111-126, 2021.
Article in English | MEDLINE | ID: mdl-34250942

ABSTRACT

BACKGROUND: Anosognosia, or unawareness of memory deficits, is a common manifestation of Alzheimer's disease (AD), but greatly variable in subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) subjects. Self-referential network (SRN) is responsible for self-referential processing and considered to be related to AD progression. OBJECTIVE: Our aim is to explore connectivity changes of SRN and its interaction with memory-related network and primary sensorimotor network (SMN) in the AD spectrum. METHODS: About 444 Alzheimer's Disease Neuroimaging Initiative subjects (86 cognitively normal [CN]; 156 SCD; 146 aMCI; 56 AD) were enrolled in our study. The independent component analysis (ICA) method was used to extract the SRN, SMN, and memory-related network from all subjects. The alteration of functional connectivity (FC) within SRN and its connectivity with memory-related network/SMN were compared among four groups and further correlation analysis between altered FC and memory awareness index as well as episodic memory score were performed. RESULTS: Compared with CN group, individuals with SCD exhibited hyperconnectivity within SRN, while aMCI and AD patients showed hypoconnectivity. Furthermore, aMCI patients and AD patients both showed the interruption of the FC between the SRN and memory-related network compared to CN group. Pearson correlation analysis showed that disruptive FC within SRN and its interaction with memory-related network were related to memory awareness index and episodic memory scores. CONCLUSION: In conclusion, impaired memory awareness and episodic memory in the AD spectrum are correlated to the disconnection within SRN and its interaction with memory-related network.


Subject(s)
Agnosia , Alzheimer Disease/psychology , Awareness , Cognitive Dysfunction/psychology , Memory Disorders/physiopathology , Nerve Net/physiopathology , Aged , Amnesia/psychology , Brain/physiopathology , Female , Humans , Male , Memory, Episodic
19.
Soft Matter ; 17(3): 724-737, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33220671

ABSTRACT

Surfaces with nonuniform wettability have attracted much attention recently due to their academic significance and applications in droplet lateral motion. In this study, numerical simulations and theoretical analyses are conducted to investigate the dynamic behaviors of a droplet impacting on a wettability-patterned surface, in which the superhydrophobic substrate is decorated with a hydrophilic pattern. An improved diffuse interface method coupled with the adaptive mesh-refinement technique and Kistler dynamic contact angle model is adopted to capture the interfacial evolution. After the validation of the numerical method, the dynamic mechanisms of impacting droplets are explored by analyzing the variation of the contact line and velocity profile. Then, systematic simulations are conducted using hydrophilic patterns with different geometric parameters. And the parameter of effective retraction area S is introduced to quantify the wettability patterns. On this basis, the general rules between the patterns and droplet lateral motion are established, and the design principles of hydrophilic patterns are obtained. The numerical results indicate that arc-shape hydrophilic patterns are more appropriate for realizing the droplet lateral motion, which can produce a larger lateral velocity and less residual liquid. In addition, the relevant motion parameters of the droplet are predicted more accurately by using the previous theoretical method. And the mechanism of energy transformation and dissipation is further revealed. Moreover, a simple and practical model is proposed to predict the lateral velocity using the effective retraction area.

20.
Front Aging Neurosci ; 12: 578863, 2020.
Article in English | MEDLINE | ID: mdl-33192472

ABSTRACT

Background: Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease (AD) dementia. MCI individuals with deficits in executive function are at higher risk for progressing to AD dementia. Currently, there is no consistent result for alterations in the executive control network (ECN) in MCI, which makes early prediction of AD conversion difficult. The aim of the study was to find functional MRI-specific alterations in ECN in MCI patients by expounding on the convergence of brain regions with functional abnormalities in ECN. Methods: We searched PubMed, Embase, and Web of Science to identify neuroimaging studies using methods including the amplitude of low frequency fluctuation/fractional amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in MCI patients. Based on the Activation Likelihood Estimation algorithm, the coordinate-based meta-analysis and functional meta-analytic connectivity modeling were conducted. Results: A total of 25 functional imaging studies with MCI patients were included in a quantitative meta-analysis. By summarizing the included articles, we obtained specific brain region changes, mainly including precuneus, cuneus, lingual gyrus, middle frontal gyrus, posterior cingulate cortex, and cerebellum posterior lobe, in the ECN based on these three methods. The specific abnormal brain regions indicated that there were interactions between the ECN and other networks. Conclusions: This study confirms functional imaging specific abnormal markers in ECN and its interaction with other networks in MCI. It provides novel targets and pathways for individualized and precise interventions to delay the progression of MCI to AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...